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Section 1 Executive Summary
1.0 Introduction

A major impediment to broad acceptance of dataflow specifications for
high performance applications is the absence of any standard for dataflow
language. While virtually all dataflow graph based specification methods and
supporting software tools are based on a common dataflow mathematical model,
they are never the less all mutually incompatible. There are a number of
dataflow tools and environments that either execute the dataflow specifications
directly or automatically translate the specifications into source code for
executable realizations of the specifications. Transferring dataflow graphs or
reusing legacy designs and specifications from a different dataflow programming
environment is not possible. In the absence of anything like ANSI language
standards, developers are reluctant to utilize the promising dataflow technology
because using a particular vendors tools is a log term commitment to the vendor
as well as the technology. The fact that dataflow tool vendors are for the most
part small businesses only exacerbates the problem.

The Dataflow Interchange Format (DIF) is an ongoing research project at
the University of Maryland (UMD). Its objective is the development of a vendor
neutral language for specification of dataflow graphs. lIts acceptance as an
industry standard by dataflow tool vendors would enable exchange of dataflow
graphs among supporting vendors tools and programming environments.
Developers could save and reuse legacy dataflow graphs from all vendors tools
used in past developments. Government could provide dataflow graph
specifications in DIF from other contracts as GF| with the expectation that they
could be readily imported into whatever dataflow environment in use.

DIF's application to high performance computing was originally explored
under DARPA's PCA program. Management Communications and Control, Inc.
(MCCI), then performing under DARPA SBIR SB011-008, developed a DIF
generator tool for the Autocoding Toolset® that generated DIF representations of
graphs from the PGM textual form, Signal Processing Graph Notation (SPGN).
The feasibility of generating DIF representations of dataflow graphs developed in
the PGM development environment using Management Communications and
Control, Inc. (MCCl)'s proprietary tools was demonstrated.

STTR 03-003 is a collaboration between MCC! and UMD to demonstrate
the feasibility of developing DIF -as a vendor-neutral dataflow specification
language that will support the specification of high performance applications and
exchange of those specifications among vendor proprietary tools and
programming environments. The objective is to provide a candidate standard
dataflow language supporting both graph exchange and accumulation of
universally reusable dataflow legacy codes.
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1.1 STTR Phase | Objectives

The MCCI, UMD team undertook STTR 03-003 with two main objectives.
These are:

a. Development of a feasibility version of DIF, and

b. Demonstration of graph exchange between MCCI's Autocoding
Toolset® and UC Berkeley's Ptolemy programming environments using DIF.

Expansion of the DIF prototype demonstrated in the earlier PCA support work
into a Turing complete feasibility language version was planned. The feasibility
version would demonstrate the capability for expressing high performance
applications. For acceptance as an industry standard, it is necessary that DIF
have the capability to express the complex and stressful applications found in
high performance embedded computing systems and anticipated in HPCS
program for the next generation of super computing. Of course, this must be
completely vendor neutral. The feasibility version of DIF must be supported with
export and import tools that enable its generation from and import into specific
vendor or academic programming environments.

The "proof of the pudding" is the exchange of dataflow graphs using DIF
between two dataflow programming environments that have nothing in common
other that the mathematical model for their specifications. We intended to
demonstrate the export of an application specified in PGM in the DIF format and
implement the exported DIF specification using Ptolemy. PGM is the dataflow
graph based methodology developed by the Navy circa 1980 supporting the Karp
and Miller dataflow mathematical model. Ptolemy is the specification and
simulation environment developed at UC Berkeley with the origins of its dataflow
Modeling capabilities in the same seminal Karp and Miller dataflow publication.

The import process was then to be reversed, importing a DIF specification
of an application developed with Ptolemy, implementing it in the PGM based
Autocoding Toolset®. This round trip was intended to both demonstrate the
feasibility of dataflow graph exchange using DIF and uncover requirements for
development of a full performance version in phase Il of the STTR.

1. 2 STTR Phase II Accomphshments

The UMD mvestlgators developed version 0.2 of DIF, mcorporatmg a
number of improvements and extensions to version 0.1 developed in the earlier
program. The DIF language parser and translation tools for generating Ptolemy
applications from DIF specifications were upgraded for the new version of
Ptolemy. MCCI upgraded the DIF generator tools to enable generation of DIF
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version 0.2 from PGM partition graph specifications. A DIF import tool was
developed that generated PGM representations of imported DIF application
specifications.

The new version of DIF was demonstrated in exchanging a version of the
Synthetic Aperture Radar (SAR) benchmark between a realization in MCCl's
Autocoding Toolset® and a Ptolemy realization via export and import of its DIF
specification. The SAR benchmark has become a standard application for
measuring high performance embedded computers and programming
environments. It is a stressful application demanding in both processing and
inter-processor communications. The round trip was completed by generating a
DIF version of the SAR benchmark, re-importing it back into the Autocoding
Toolset® programming environment, and generating an application from the
imported specification. Both imported versions executed on Ptolemy and cluster
architecture targets supported by MCCI with results differing only by precision
errors. A second Ptolemy application, Multi Rate Filter, was exported from
Ptolemy via DIF and imported into the Autocoding Toolset® programming
environment. Figure 1 shows the results of SAR executing in Ptolemy and
Autocoding Toolset® environments. This figure represents the phase | bottom
line, the round trip exchange of a high performance application using DIF
generated in different programming environments for dataflow graph export and
import.

PtOIemy( PGM Export) hd) RASSP MINI SAR DISPLAY

.113328370318E9, -5.672582199684E8
.686243152456E9, -1.132239286739E9
.280892492213E9, -1.837179778052E9
.787030647091E9, -2.565079199379E9
.121469726315E9, -3.124321013999E9
.235633491442E9, -3.339997173742E9
.126105298721E9, -3.132702116709E9
.795907223687E9, -2.578937710771E9
.292518065694E9, -1.852489499236E9
.698661416987E9, -1.145532955647E9

HD DWW WNNND R~

MCCI( DIF Import)

| RASSP MINI SAR DISPLAY

.11334E+09, -5.67194E+08
.68657E+09, -1.13206E+09
.28101E+09, -1.83712E+09
.78720E+09, -2.56485E+09
.12169E+09, -3.12429E+09
.23570E+09, -3.33972E+09
.12633E+09, -3.13268E+09
.79604E+09, -2.57867E+09
.29266E+09, -1.85242E+09
.69888E+09, ~-1.14531E+09

NN WWWND N = e

Color Map Range: 2.02+08 -> 2.0e+09

MCCI/UMD Final Report 4
STTR03-003



PtOIemy( PGM Export) ] RASSP MINI SAR DISPLAY i

.113328370318E9, -5.672582199684E8
.686243152456E9, -1.132239286739E9
.280892492213E9, -1.837179778052E9
.787030647091E9, -2.565079199379E9
.121469726315E9, -3.124321013999E9
.235633491442E9, -3.339997173742E9
.126105298721E9, -3.132702116709%E9
.795907223687E9, -2.578937710771E9
.292518065694E9, -1.852489499236E9 Color Map Range: 2.0e+03 -> 2.0=+093
.698661416987E9, -1.145532955647E9

BN RDNWWWNND R e

MCCI( DIF Import)

.11334E+09, -5.67194E+08
.68657E+09, -1.13206E+09
.28101E+09, -1.83712E+09
.78720E+09, -2.56485E+09
.12169E+09, -3.12429E+09
.23570E+09, -3.33972E+09
.12633E+09, -3.13268E+09
.79604E+09, -2.57867E+09
.29266E+09, -1.85242E+09
.69888E+09, -1.14531E+09

hdl RASSP MINI SAR DISPLAY

RO WWW RN R

Color Map Range: 2.0e+08 ~> 2.0e+09

Figure 1 - SAR benchmark application output executing on Ptolemy and on a
MCCI's Autocoding Toolset® realization on a Line cluster. DIF was used to
export a PGM specification to Ptolemy and a Ptolemy specification of the same
application to the Autocoding Toolset® .

The DIF version 0.2 language specification and the two DIF application
specifications were an analyzed to determine new capabilities required for a full
performance version of DIF. In general the feasibility version of DIF is Turing
complete and capable of specifying the class of applications encountered in high
performance computing. However it lacks a number of engineering convenience
features for handling large and complex applications in a compact manner.
MCCI identified requirements for features for an “Industrial Strength” full
performance of DIF. UMD and MCCI verified that concepts underlying DIF will
support expansion to meet these requirements.

1.3 Study Conclusions

DIF version 0.2 significantly improved the prototype DIF version 0.1. It
provides a Turing complete method for specifying dataflow applications. It
proved adequate for specification of the defacto standard high performance
embedded computing SAR benchmark. Dataflow has often been a difficult
concept for object oriented computer scientists to accept. The structure of DIF as
a Java Package should make dataflow specification more understandable to a
broader range of software engineers and more compatible with existing
development environments.
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The feasibility of using DIF as a vendor (and university) independent
language for exchange of dataflow graphs among proprietary and unique
university dataflow environments was demonstrated. The assumption that all
dataflow graphs must share a common mathematical model that may serve as a
basis for specification exchange was reinforced. Seeming inconsistencies
between Ptolemy and PGM representations of dataflow graphs were quickly
overcome when analyzed from the viewpoint of dataflow behavior of the
underlying model. Constructs with common behavior were quickly identified for
topology substitutions. The exchange of the SAR benchmark dataflow graph
specifications demonstrated the feasibility of using DIF for graph exchange.
Issues identified in the porting demonstration are readily addressable in phase
of the project.

DIF export and import tool prototypes were developed to support graph
exchange. Extending these prototypes to support a full performance version of
DIF is straightforward involving significant reuse of existing code modules and
should pose no development problems.

1.3.1 DIF issues

Several issues were uncovered during the course of the STTR phase |
project. These are

a. Requirements for upgrading DIF to provide engineering convenience
language features for compact specification of large complex applications
targeting parallel architectures.

b. The need for a standard functional library for actors/primitives/ node
functional specifications.

While Turing completeness was demonstrated in the development of DIF
V0.2, a number of features and capabilities were identified that will facilitate
specification of large complex applications. While not strictly necessary, their
inclusion in the language definition can significantly improve the language power
enabling succinct specifications of complex topology and control interfaces.
While DIF is textual, its information must support graphical displays where
application dataflow must be intuitive. Verbosity leading to confusing graphical
displays is unhelpful. More sophisticated hierarchical structuring, the use of
icons representing graph entity arrays, and the use of expressions in control
interfaces are important capabilities to add to DIF to enhance its power to specify
high performance applications succinctly. Other desired features of secondary
importance were also identified.

The problem of non standard functional libraries in dataflow tools was
encountered in the export and import experiments. DIF is actor independent,
naming actors but not specifying their functionality. Nevertheless when
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implementing DIF specifications in a particular programming environment, actors
or Domain Primitives, native to the target environment must be specified for the
application to be realized as executable code. DIF specifications of the SAR
benchmark were exported naming Domain Primitives. The specifications had to
be transformed to Ptolemy Actor specifications to import the application into
Ptolemy. Actor to Domain Primitive transformation was required for importing
Ptolemy applications into the Autocoding Toolset®. An Actor Interchange Format
tool prototype that facilitates transformation was demonstrated but this
represents only a partial solution to the problem of transforming functional
specifications within the DIF application graph between all possible combinations
of source and target environments. The need for a common functional library as
part of the DIF standard became clear during the feasibility study.

1.4 Phase Il Objectives

The study identified three main objectives for a phase Il follow-on to the
phase | feasibility study . These are:

a. Development of DIF V1.0 as an "industrial strength”, publicly releasable
version of DIF. DIF Version 1.0 will incorporate language features identified in the
phase | study enhance its power to specify large, complex high performance
applications.

b. Development of a standard functional domain actor library supporting
DIF. The VSIPL library will serve as the functional specifications for actor
specifications in DIF. Importing tools and environments may implement support
for the VSIPL base library or, using the Actor Interchange Format transform DIF
VSIPL actor specifications into functionally comparable specifications in the
target environment. The VSIPL standard is intended to facilitate exchange of
codes between different processing hardware. The addition of a VSIPL based
library to DIF will add the capability to exchange specifications between dataflow
programming environments.

c. Development of improved infrastructure support for DIF to included full
performance versions of DIF export and import tools and code generation
frameworks.

1.5 Report Organization
This technical report is organized into 5 sections.. The report sections are:
a. Section 1 - Executive Summary
b. Seétion 2 - DIF Technical Description. This is a technical overview of

version 0.2 of the DIF language and tool support developed for exporting and
importing DIF specifications to programming environments
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c. Section 3 - Dataflow Graph Exchange This section describes porting an
application from MCCl's Autocoding Toolset® dataflow programming
environment into the Berkeley Ptolemy environment and then exporting it and re-
importing it into MCCl's tools. Exporting a second Ptolemy application is also
described. This section develops the supports the study's conclusion that graph
exchange via a vendor neutral dataflow language is feasible.

d. Section 4 - Requirements for a full performance DIF. Analysis of DIF
version 0.2 capabilities is reported in this section. Capabilities needed for a full
performance version are identified and rationales for their requirements are
presented. This section provides the foundation for our phase |l proposal.

e. Section 5 - Formal Study Conclusions This section states the studies
findings and conclusions.

Four appendices are attached to this report. Appendix A is a full
description of DIF and the formal language specification. Appendix B includes all
listings of all SPGN and DIF specifications generated during the study. Excerpts
from these listings are used in the reports main body to illustrate graph import
and export. Appendix C is the SableCC grammar. Appendix D is the Actor
Interchange Format grammar.
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Section 2 DIF Technical Description
2.1 DIF Overview

The Dataflow Interchange Format (DIF) is a standard language to specify
mixed-grain dataflow models for digital signal, image, and video processing (DSP)
systems and other streaming-related application domains. Major objectives of
the DIF project are to design such a standard language; to provide an extensible
repository for representing, experimenting with, and developing dataflow models
and techniques; and to facilitate technology transfer of applications across DSP
design tools.

This phase of the DIF project, in which we discuss in this report, has
focused on improving the DIF language and the DIF package to represent more
sophisticated dataflow semantics and exploring the capability of DIF in
transferring DSP applications and technology.

2.1.1 The DIF Language

The Dataflow Interchange Format (DIF) is proposed to be a standard
language for specifying dataflow semantics in all dataflow models. This language
is able to be an interchange format for different dataflow-based DSP design tools
because it provides an integrated set of syntactic features that can fully capture
essential modeling information of DSP applications without over-specification.

From the dataflow point of view, DIF is designed to describe mixed-grain
graph topologies and hierarchies as well as to specify dataflow-related
information. This dataflow semantics specification is based on dataflow modeling
theory and independent of any design tool. Therefore, as long as design tools
operate based on the supported dataflow models, the DIF language is applicable
and the dataflow semantics of a DSP application is unique in DIF regardless of
design tools. Moreover, DIF also provides syntax to specify design-tool-specific
actor information. Although actor information is irrelevant to dataflow-based
analyses, it is essential in exporting, importing, and transferring across tools.

DSP applications specified by the DIF language are usually referred to as
DIF specifications. The DIF package provides a frond-end tool, the DIF language
parser, which converts a DIF specification into a graph-theoretic intermediate
representation. This parser is implemented using a Java-based compiler-
compiler called SableCC. The complete SableCC grammar of the Dataflow
Interchange Format is presented in Appendix B.18.

From DIF language version 0.1 to version 0.2, syntax consistency and
code reusability has been improved significantly. DIF language version 0.2 also
supports more flexible parameter assignment and provides more flexible syntax
in specification attributes. Moreover, it supports most commonly used value
types in DSP applications and provides arbitrary naming spaces. Also, the actor
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block is newly created in DIF version 0.2 for specifying design-tool-dependent
actor information.

2.1.2 DIF Language Version 0.2 Syntax

A specification in DIF version 0.2 consists of eight blocks: basedon,
topology, interface, parameter, refinement, built-in attribute, user-defined attribute,
and actor. Those blocks specify different aspects of dataflow semantics and
modeling information. Figure 2.a introduces the syntax of the DIF language
version 0.2.

modelKeyword graphl!D {
basedon { graphiD; }
topology {
nodes = nodelD, ..., nodelD;
edges = edgelD (sourceNodelD, sinkNodelD),

edgelD (sourceNodelD, sinkNodelD);

interface {
inputs = portlD [:nodelD], ..., portID [:nodelD];
outputs = portID [:nodelD], ..., portID [:nodelD];

parameter {
paramiD;
paramID = value;
paramiD : range;

refinement {
subgraphlD = supernodelD;
subPortID : edgelD; ...; subPortID : portlD;
subParamlD = paramlD; ...;

}

built-in-attribute {
[elementID] = value;
[elementID] = id;
[elementID] = id1, id2, ..., idN;

attribute user-defined-attribute{
[elementID] = value;
[elementID] = id;
[elementID] = id1, id2, ..., idN;

actor nodelD {
computation = stringValue;
actorAttributelD [: actorAttributeType] = value,
actorAttributelD [: actorAttributeType] = id;

o

. et

B R I E

actorAttributelD [; actorAttributeType] = id1, ..., idN;
}

Figure 2a - Structure of the DIF language version 0.2 syntax
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The basedon block provides a useful feature for code reuse. As long as
the graph referred to in this has the same topology, interface, and refinement
blocks, designers can simply refer to it and override the name, parameters and
attributes as desired to construct a new “version” of the same graph structure.

The topology block defines a set of nodes and a set of edges. An edge is
specified by its source node identifier and sink node identifier.

The interface block defines a set of input ports and a set of output ports.
An interface port can optionally associate inside with a node in the same graph.
The inside association is defined in the interface block. An interface port can
also connect outside to an edge or a port in the super-graph. This outside
connection is defined in the refinement block of the super-graph.

DIF supports parameterization of values in the parameter block. A
parameter can be used to parameterize a value, specify a value range.
Parameter values can also be left unspecified (e.g., in the case of parameters
settings that are dynamically configured). The range of a parameter is specified
as a single interval of numbers or a union of multiple intervals.

For each supernode in the graph, there is a refinement block used to
specify the supernode to sub-graph refinement. In addition, it specifies the
interface connection between the port in the sub-graph and the edge (or port) in
the current graph. It also specifies the unspecified sub-graph parameter by the
parameter defined in the current graph.

In DIF semantics, nodes, edges, ports, and the graph itself can be
associated with attributes. Attributes can be assigned a variety of value types,
an identifier (node, edge, port or parameter identifier), or a list of identifiers.
Every dataflow model in DIF can define its own built-in attributes and its own
methods to process those built-in attributes. The DIF language parser treats
built-in attributes in a special way such that the method defined in the
corresponding dataflow parser is invoked to handle those built-in attributes. The
common built-in attributes defined in DIF are production, consumption, and delay.
The production and consumption attributes specify the token production and
consumption rates associated with the corresponding edge, and the delay
attribute specifies the number of delays associated with an edge.

The user-defined attribute block starts with the keyword attribute. Users
can define their own attributes, but DIF only records user-defined attributes in
special data structures called -attributecontainers:-As far as the DIF language is
concerned, all processing of built-in attributes must be implemented by the user,
and the DIF package provides convenient interfaces for developing such
implementations. The DIF package may also contain functionality that processes
built-in attributes. This would be the case for more experimental or specialized

MCCI/UMD Final Report 11
STTR 03-003




functionality that is presently not considered stable or “standard” enough to be
incorporated into the DIF language in any form. '

The actor block is used to specify design-tool-dependent actor information.

Such actor information is irrelevant to platform-independent dataflow-based
analyses, such as detection of deadlock or sample-rate inconsistencies in static
dataflow models. However, capturing actor information is essential in exporting
and importing between DIF and design tools as well as porting DSP applications,
because the functionalities of actors need to be preserved. The buiit-in actor
attribute computation is used to specify the functionality of a node that represents
a functional module (actor) in design tools. DIF provides three built-in actor
attribute types, PARAMETER, INPUT, and OUTPUT and supports assigning
values, identifiers, and lists of identifiers to actor attributes.

DIF v0.2 provides most commonly used value types in DSP: integer,
double, complex, integer matrix, double matrix, complex matrix, string, Boolean,
and arrays of the above values. DIF v0.2 also supports scientific notation for
double values.

For a complete description of the DIF language version 0.2, please refer to
Section 2 and Section 3 in the “Dataflow Interchange Format Version 0.2"
technical report.

2.1.4 Dataflow Models

The DIF language is designed to specify all dataflow models for DSP and
streaming related applications. In other words, its syntax should be capable of
describing dataflow semantics in all dataflow models of computation. DIF version
0.1 has demonstrated its capability of describing CSDF, SDF, single rate
dataflow, and HSDF. DIF version 0.2 improves the syntax to support more
complicated dataflow semantics, for example, Turing-complete dataflow such as
BDF and meta-modeling techniques such as parameterized dataflow. The
currently supported dataflow models are CSDF, SDF, single rate graph, HSDF,
PSDF, BDF, BCSDF, and ILDF. In addition a new dataflow model of
computation, called DIF, is introduced to provide maximum generality when all
other supported dataflow models do not match a given application. The DIF
model of dataflow imposes minimal restrictions on the characteristics of a
dataflow specification; for example, arbitrary objects can be associated with the
production rates, consumption rates, and delays of graph edges.

w ... For-an introduction to the supported dataflow models in DIF and how to .ssamz v

use DIF to specify them, please refer to Section 4 in “Dataflow Interchange
Format Version 0.2" technical report.

2.1.3 The DIF package
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The DIF package is a Java-based software package developed along with
the DIF language. In general, it consists of three major parts: the DIF front-end,
the DIF representation, and the dataflow-based analysis, scheduling, and
optimization algorithms.

2.1.3.1 The DIF Representation

For each supported dataflow model, the DIF package provides an
extensible set of data structures (object-oriented Java classes) for representing
and manipulating dataflow graphs in the model. This graph-theoretic intermediate
representation for the dataflow model is usually referred to as the DIF
representation.

The DIFGraph, corresponding to the DIF model of dataflow described
above, is the most general graph class in the DIF package. It represents the
basic (minimally-restricted) dataflow graph structure among all dataflow models,
and provides methods that are common to all models for manipulating graphs.
More specialized dataflow models can be easily incorporated into the DIF
representation suite by extending the most closely-related existing graph class,
and overriding and adding methods as appropriate to perform more specialized
analyses and optimizations. For example, when the synchronous dataflow (SDF)
representation was incorporated into the DIF package, the associated graph
class was derived from that of cyclo-static dataflow (CSDF), of which SDF is a
special case.

Figure 2.b shows the class hierarchy of graph classes in the DIF package.
The DIFGraph class is extended from the Graph class in Ptolemy’s

“ptolemy.graph package, which has been developed primarily by the UMD team in

collaboration with U. C. Berkeley’s Ptolemy group and provides data structures
and methods for implementing analyses on generic graphs. The dataflow

models CSDF, SDF, single rate dataflow, and HSDF form a “specialization chain”
such that each succeeding dataflow model among this list of four is a restricted
version (special case) of the previous one. Accordingly, CSDFGraph, SDFGraph,
SingleRateGraph, and HSDFGraph form a linear class hierarchy in the DIF
package such that each graph class inherits from graph class associated with the
previous model in the chain.

In addition to the aforementioned fundamental graph classes, the DIF
package also provides the Turing-complete BDFGraph representation, the
PSDFGraph representation for modeling of dataflow graph reconfiguration, and

- the newly proposed BCSDFGraph (binary cyclo-static-dataflow), representation,

which has been introduced as part of this Phase | work. Furthermore, a variety
of other dataflow models are being explored for inclusion in DIF.
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Figure 2.b - The graph class hierarchy in the DIF package
2.1.3.2 The DIF Front-end

Automatic conversion between DIF specifications (.dif files) and DIF
representations (graph instances) is perhaps the most fundamental feature of the
DIF package. The DIF front-end tool automates this conversion and provides
users an integrated set of programming interfaces to construct DIF
representations from specifications, and to generate DIF specifications from
intermediate representations.

The DIF front-end consists of a Reader class, a set of language parsers
(Language Analysis classes), a Writer class, and a set of graph writer classes.
The language parsers are implemented using a Java-based compiler compiler
called SableCC, which has been developed at McGill University. The flexible
structure and efficient Java integration of the SableCC compiler enables easy
extensibility for parsing different dataflow graph types.

Figure 2.c illustrates how the DIF front-end constructs the corresponding
DIF representation (graph class) from a given DIF specification. The Reader
class invokes the corresponding language analysis class (DIF language parser)
based on the model keyword specified in the DIF specification. Then, the
language analysis class constructs a graph instance accordlng to the dataflow
semantics specified in.the DIF specification--
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Figure 2.c - The DIF front-end: from DIF specification to DIF representation

On the other hand, Figure 2.d iilustrates how the DIF front-end generates
the DIF specification according to the DIF representation. The Writer class
invokes the corresponding graph writer class based on the type of the given
graph instance. After that, the graph writer class generates the DIF specification
by tracing elements and attributes of the graph instance.

DIF Intermediate
Representations

DIFGraph

3\

writers.txt

"\ "} CSDFToDIFWriter [, /#

Y SDFToDIFWriter |

Graph Writer Classes

—! DIF Specification

-l DIFWriter - X Writer

4

/

ali
{ SingleRate ToDIF Writef |
/l

N HSDFToDIFWriter |

Figure 2.d - The DIF front-end: from DIF representation to DIF specification

2.1.3.3 The Dataflow-based Analysis, Scheduling, and Optimization Algorithms

For supported dataflow models, the DIF package provides not only the

graph-theoretic intermediate representation but also various associated analysis,

scheduling, and optimization algorithms. Algorithms currently available in the
DIF package are based primarily on well-developed algorithms such as iteration
period computation, consistency validation, buffer minimization, and loop
scheduling. By building on the DIF representations and associated software
infrastructure, and invoking the built-in fundamental algorithms as necessary,
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emerging techniques and newly proposed algorithms can conveniently be
designed, implemented, evaluated, and refined using the DIF package.

The dataflow-based algorithms in the DIF package provide designers an
efficient interface to analyze and optimize DSP applications. It is also worthwhile
to integrate DSP design tools with the DIF package and then utilize the powerful
scheduling and optimization features of the DIF package. Indeed, along these
lines, we are presently exploring the cooperation of the PSDF domain in Ptolemy
Il and the PSDF scheduling algorithm in the DIF package. Moreover, integrating
SDF related scheduling and optimization techniques in the DIF package with the
PGM-based Autocoding Toolset will be explored extensively in the future.

2.1.3.4 Methodology of using DIF

Figure 2.e illustrates the implementation and end user viewpoint of the DIF
architecture. DIF supports as the core a layered design methodology covering
dataflow models, the DIF language and DIF specifications, the DIF package,
dataflow-based DSP design tools, and the underlying hardware and software
platforms targeted by these tools. This design methodology clearly demonstrates
the careful positioning of DIF in the DSP design and embedded systems
communities.

The dataflow models layer represents the dataflow models currently
integrated in the DIF package. These models can be further categorized into
static dataflow models such as SDF and CSDF; dynamic dataflow models such
as the Turing-complete BDF model; and meta-modeling techniques such as
parameterized dataflow, which provides the dynamic reconfiguration capability of
PSDF. Using the DIF language, application behaviors compatible with these
dataflow modeling techniques can be specified as DIF specifications.

The dataflow-based DSP design tools that we have been experimenting
with in our development of DIF so far are Ptolemy Il developed at UC Berkeley
and the Autocoding Toolset developed by MCCI. Tools such as these form a
layer in our proposed DIF-based design methodology. Ptolemy Il is a java-based
design environment and utilizes the Modeling Markup Language (MoML) as its
textual format for specification and interchange. Ptolemy Il provides multiple
models of computation and a large set of libraries consisting of actors for various
application domains. On the other hand, the MCCI Autocoding Toolset is based
on Processing Graph Method (PGM) semantics and uses Signal Processing
Graph Notation (SPGN) as its specification format. It also provides an efficient
library consisting of domain primitives for DSP computations and-is-able to
synthesize software implementations for certain high-performance platforms. In
our phase | development of DIF, we have been experimenting with our proposed
design methodology primarily with the Autocoding Toolset and Ptolemy II.
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The hardware / software embedded systems layer gives examples of
current hardware / software implementations supported by Ptolemy Il and the
Autocoding Toolset. Ptolemy Il can generate executable Java code for running
on the Java VM. On the other hand, the Autocoding toolset is able to generate
executable C code for Mercury DSPs and Ada for the Virtual Design Machine
(VDM). In addition, we are examining the requirements and implications of DIF-
based support for other tools that have the ability to map dataflow models to
efficient hardware / software implementations.

The DIF package acts as an intermediate layer between the abstract
mathematical properties of dataflow models and implementations of DSP
applications on embedded computing platforms. It takes on the responsibility of
providing comprehensive data structures for managing dataflow graphs and for
carrying out useful dataflow-based algorithms efficiently on these data structures.
DIF exporting and importing tools automate the process of exporting DSP
applications from design tools to DIF specifications and importing them back to
design tools. Automating the exporting and importing processes between DIF
and design tools provides the DSP design industry a convenient front-end to use
DIF and the DIF package.

Dataflow Models

Fundamental Dataflow Models Dynamic Dataflow Models Meta-Modeling Techniques
| soF | | cspF | | HsDF | | ILDF || BCsDF | BDF
~ rd —

DIF Specifications = Jeeceemeee- DIF
Language

The DIF Package

t Dataflow-based Analysis,
Scheduling, and Optimization
[ DIF Representations ]‘—' Algorithms
f
v

l DIF Exporting / Importing Tools '

A

4 )

Dataflow-based ; .

DSP Desien Tools rPtolemy I i l Autocoding Toolset I | Other Design Tools
\_ ng ry A \ J
4 BTN S i . . L e I

Hardware/ Softiare ' Java c [ Ada

Embedded Systems I

| Java VM I [Mercury DSPs J [Virtua] Design Machine |

- J

Figure 2.e - Methodology for using DIF.
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For a complete report of the DIF project developed in UMD, please refer to
“Dataflow Interchange Format Version 0.2" technical report. .

2.2 Autocoding Toolset® Tool Support

The Autocoding Toolset® supports DIF with export and import tools. A
demonstration DIF export tool was developed in an earlier SBIR, SB011-008.
This tool was upgraded to a DIF Generator prototype tool in this effort. This tool
translates a SPGN representation of a "flat" graph to a DIF representation. The
term "flat", means that the graph contains nodes and queues only. Subgraph
hierarchies and families (arrays of entities) and not included in a "flat" graph.
"Flattening" refers to the process of expanding subgraph hierarchies and families
(arrays of entities) into flat graph topology referencing each entity explicitly.

A DIF import prototype tool was also developed under this SBIR. This tool
translates DIF inputs to equivalent PGM graphs in SPGN formats.

2.2.1 DIF Export Tool

Figure 2.f illustrates the organization of the core tools in the Autocoding
Toolset®. The Partition Builder tool accepts the input of top level dataflow
graphs specifications of applications. These graphs may include subgraph
hierarchies, families or arrays of elements, parameters bound at either
compilation of instantiation to make specific instances of more general purpose
application specifications, and variables changeable during execution to change
active graph topology or processing behavior. These application specifications
must be partitioned into graph segments that specify the processing of the
threads that will ultimately implement the applications processing. Partition
graphs are generated for each user specified partition. Partition graphs are flat.
Value sets must be enumerated for parameters and runtime variable controls.
Most importantly, partition graphs must be cyclo-static, their execution behavior
must be periodic. Partitioning rules insure that this latter condition is always met,
even if it results in one node partitions.

MPIDGen is the translation and code generation tool. Behavior models
are created for each partition graph. The model includes the periodically
repeating sequence of the graphs node executions and the memory states of
internal queues between each node execution. This behavior model is combined

.. «with.the-Domain Primitive functional specifications for each node and the Target.= -

Primitive Maps that provide instructions for implementing the Domain Primitives
processing using target math library routines to form a complete specification for
the threads code. Thread executable code is then generated from the
specification.
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Figure 2.f - MCCI DIF Generator

The Application Generator completes building application source code.
Task manager code is generated to manage all tasks assigned to each
processing resource. Inter Processor Communication routines are automatically
generated to transfer data passed by queues spanning partition specifications.
And, a makefile hierarchy is generated enabling compilation with a single make
command.

The flat partition graph most nearly matches the current capabilities of DIF.
DIF does support hierarchy but not graph entity arrays. Therefor the DIF
generator was implemented as a processing path in the MPIDGen tool. SPGN
files of partition graphs are created by MPIDGen and the DIF Generator is
invoked on each SPGN file producing a translation to DIF. The DIF Generator
may be invoked by a command line control. - Using the DiF Generator, DIF
realizations of partition graphs may be generated for each user specified graph
partition.

Figure 2.g is an excerpt from a translation of the range processing in a
synthetic radar (SAR) application. The PGM SPGN is shown on the left. The
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DIF translation is shown on the right. A complete listing of the two files is
contained in Appendix B. MPIDGen may be executed independently on whole
graphs. Provided no unsupported graph entities are included, MPIDGen with the
DIF generation control set may be used to translate PGM graphs to DIF
independent of the other tools. However, going through the partltlon builder will
insure only fully supported flat graphs are translated.

%% Functional requirements graph for range processing of dif RNG_FR
%% SAR example. {
%GRAPH( RNG_FR topology
GIP  =NFFT:INT, {
NR:INT, nodes =
NPAD : INT, PAD,
TAYLOR_WTS : CFLOAT ARRAY(2048), WEIGHT,
RCS_WTS : FLOAT ARRAY(2048) COMPRESS,
INPUTQ = %% usecfloat data for initial verification COMPENSATE;
%% RANGE_IN : CINT edges =
RANGE_IN : CFLOAT : PADDED (PAD, WEIGHT),
OUTPUTQ = RANGE_OUT : CFLOAT ) WEIGHTED (WEIGHT, COMPRESS),
%GIP( PAD_VAL : CFLOAT INITIALIZE TO <0.0E0,0.0E0> ) COMPRESSED (COMPRESS,
%GIP( NRNG : INT INITIALIZE TO 512)) COMPENSATE);
%QUEUE( PADDED : CFLOAT)
%QUEUE( WEIGHTED : CFLOAT ) interface
%QUEUE( COMPRESSED : CFLOAT ) {
%% Pad range row to NFFT_RNG size inputs =
%NODE( PAD ¥ RANGE_IN : PAD;
PRIMITIVE = D_VFILL . outputs =
PRIM_JN =NR, DIF Generation RANGE_OUT : COMPENSATE;
NPAD, }
UNUSED, parameter
PAD_VAL, {
%% for initial testing use cfloat data into graph NFFT = 2048;
%% conversion node not required! NR = 2032;
%% pipecfloat data in directly to fill NPAD = 186,
%% CONVERTED THRESHOLD = NR*NRNG TAYLOR_WTS;
RANGE_IN THRESHOLD = NRNG*NR RCS_WTS;
PRIM_OUT = PADDED ) PAD_VAL = (0.00000000000000,

0 00000000000000);

Figure 2.g - Autocoding Toolset® DIF Generation Example
2.2.2 DIF Import Tool

Figure 2.h illustrates the organization of the DIF import tool implemented under
this STTR as a stand alone tool. While it was originally considered the more
difficult tool of the pair, it proved possible to leverage UMD DIF Parser and Data
Structures and the underlying U.C. Berkeley Ptolemy2 code to simplify the
implementation. A DIF to SPGN class was added to the existing modules to
transform DIF data structures to SPGN data structures. Once transformed, the
existing SPGN generator could generate SPGN from the transformed data
structures. The ease of this implementation is strong reinforcement of the
commonality of all dataflow entity behavior. The fact that different data structures
created from different textual representation of iconically different graphs contain
the same information is a clear indication of common underlying mathematical
models.
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DIF to
SPGN Class

Figdre 2.h - Autocoding Toolset® DIF import Tool

dif AZI_FR {

topology {
nodes = CORNERTURN, FFT,
CONVL, IFFT;

edges = YFCO (CORNERTURN,
FFT),

Y_AZ (FFT, CONVL),
VMAUL (CONVL, IFFT);
}

interface {

inputs = AZI_IN : CORNERTURN,

AZ_KERN : CONVL;
outputs = AZI_OUT : IFFT;
}
parameter {
NFFT;
RNG_FFT;
}
actor CORNERTURN {
computation = "D_MTRAN";
M = NFFT;
N = RNG_FFT;

SPGN Generation

Figure 2.i - Autocoding Toolset® DIF Import Example

%GRAPH (AZI_FR
GIP =
NFFT
RNG_FFT
INPUTQ =
AZI_IN
AZ_KERN
OUTPUTQ = AZI_OUT
)
%QUEUE (YFCO)
%QUEUE (Y_AZ)
%QUEUE (VMAUL)
%NODE (CORNERTURN

PRIMITIVE =
D_MTRAN

PRIM_IN =
PRIM_OUT =
M = NFFT
N = RNG_FFT
X=AZI_IN
Y = YFCO

Figure 2.i is an example of a translation of a DIF specification of the Azimuth
processing graph in the SAR application. DIF is on the left and SPGN is on the
right. The tools is a stand alone tool invoked on a DIF input file producing a

SPGN file. A full listing of each file is included in appendix B.
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on the right. The tools is a stand alone tool invoked on a DIF input file producing
a SPGN file. A full listing of each file is included in appendix B.
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Section 3 Graph Exchange - -

3.1 Graph Exchange Overview

The graph exchange experiment conducted by MCCI and UMD was the
intended critical technology demonstration in this STTR. The bottom line of the
project is that graphs were successfully exchanged between MCCI's Autocoding
Toolset® and U.C. Berkeley's Ptolemy programming environments using DIF as
the common dataflow language for exchange. The Synthetic Aperture Radar
(SAR) benchmark was used as the application for this experiment. The SAR
benchmark has become the defacto standard benchmark for embedded high
performance computing in that it is relatively simple but very stressful of
processing and communications capabilities of target processing systems. Its
exchange between dissimilar commercial and academic programming
environments and hardware targets using DIF clearly demonstrates DIF's
potential to become the standard dataflow graph intended. A second graph,
Multi Rate Filter originally developed in Ptolemy, was also imported into the
Autocoding Toolset® environment using DIF as a second example of vendor
independent graph exchange.

3.2 Exporting the SAR Benchmark

SAR_IN :
TAYLOR WEIGHTED
RNG_FR __Res
RANGE
NFFT_RN
NFFT
RNG_OUT| NFFT_AZ
i RNG_FFT
N_R
AZIMUTH i NFILL

SAR_OUT| EZ—KERN
£
[SAR_OUJ
\___/

Figure 3.a - Synthetic Aperture Radar Benchmark used in graph exchange
experiment

Figure 3.a is the iconic representation of the SAR benchmark. The top
level specification included two subgraphs for range and azimuth process. For
each received pulse corresponding to a range bin, return data is resolved into
frequency or doppler bins. Azimuth processing convolves the range history for
each doppler or frequency bin with a range spreading convolution kernel to
sharpen range responses. Range/Frequency data matrix is corner turned
(transposed) between range and azimuth processes. Range and Azimuth
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graphs referenced by subgraphs are shown in the figure as well. The range and
azimuth processing may be distributed over a number of processors, but in this
example both were assigned to a single processing resource. Figure 3.b is an
excerpt of the textual representation of the benchmark. A full listing is in
Appendix B.

%% Functional Requirements Graph for RASSP SAR example One Polarization, full
%% processing; Carl Ecklund, MCCI
%GRAPH( FR_SAR
GIP =TAYLOR: CFLOAT ARRAY(2048),)
%% Taylor weighting to reduce sidelobes of compressed pulse.
RCS : FLOAT ARRAY(2048
%% Compressed pulse radar cross section weights.
VAR =AZ _KERN : CFLOAT ARRAY(1024)
%% Azimuth convolution kernel - Selection based on slant range. Total of 31 kernels.
16 used in processing
%% one frame. Selection is based on range row being processed. Same kernel is used
%% for 128 rows.
INPUTQ = SAR_IN: CINT
%% Complex integer data that has been FIR filtered
%% using cfloat data set SAR_IN : CFLOAT
OUTPUTQ = SAR_OUT : CFLOAT )
%% Processed data out
%GIP( NFFT_RNG : INT INITIALIZE TO 2048 )
%GIP( NFFT_AZ! : INT INITIALIZE TO 1024)
%GIP(N_R : INT INITIALIZE TO 2032)
%GIP( NFILL : INT INITIALIZE TO NFFT_RNG-N_R)
%QUEUE( RNG_OUT : CFLOAT INITIALIZE TO (NFFT_RNG*NFFT_AZI)/2 OF
<0.0E0,0.0E0>)
%% Graph RNG_FR implements functional requirements for range processing
%SUBGRAPH( RANGE
GRAPH =RNG_FR
GIP =NFFT_RNG,
N_R,
NFILL,
TAYLOR,
RCS
INPUTQ =SAR_IN
OUTPUTQ = RNG_OUT)

Figure 3.b - Textual representation of top level SAR benchmark graph using
Signal Processing Graph Notation (SPGN)

3.3 SAR Benchmark Export
The SPGN files for the SAR Range and Azimuth were each processed

through the tools as stand alone single partition graphs. The resulting partition
graphs are identical to input graphs in that case. The DIF generation control was
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set to cause output of DIF file translations. Figure 3.c is excerpts of the SPGN
input and tool generated DIF output files for the Range processing. Figure 3.d is
excerpts of the SPGN and tool generated DIF for the Azimuth processing.
Complete listings are shown in Appendix A.

%% Functional requirements graph for range processing of dif RNG_FR
%% SAR example. {
%GRAPH({ RNG_FR topology
GIP  =NFFT:INT, {
NR 1 INT, nodes =
NPAD : INT, PAD,
TAYLOR_WTS : CFLOAT ARRAY(2048), WEIGHT,
RCS_WTS : FLOAT ARRAY(2048) ' COMPRESS,
INPUTQ = %% usecfloat data for initial verification COMPENSATE;
%% RANGE_IN : CINT edges =

RANGE_IN : CFLOAT
OUTPUTQ = RANGE_OUT : CFLOAT)

PADDED (PAD, WEIGHT),
WEIGHTED (WEIGHT, COMPRESS),

9%G!IP( PAD_VAL : CFLOAT INITIALIZE TO <0.0E0,0.0E0> ) COMPRESSED (COMPRESS,
%GIP(NRNG : INT INITIALIZE TO 612) COMPENSATE),
%QUEUE( PADDED : CFLOAT )
%QUEUE( WEIGHTED : CFLOAT ) interface
%QUEUE( COMPRESSED : CFLOAT ) {
%% Pad range row to NFFT_RNG size inputs =
%NODE( PAD RANGE_IN : PAD;
PRIMITIVE = D_VFILL . outputs =
PRIM_IN =NR, DIF Generation RANGE_OUT : COMPENSATE;
NPAD, }
UNUSED, parameter
PAD_VAL, {
%% for initial testing use cfloat data into graph NFFT = 2048;
%% conversion node not required! NR = 2032;
%% pipecfloat data in directly to fill NPAD = 16;
%% CONVERTED THRESHOLD = NR*NRNG TAYLOR_WTS;
RANGE_IN THRESHOLD = NRNG*NR RCS_WTS;

PRIM_OUT = PADDED ) PAD_VAL = (0.00000000000000,

0.00000000000000),

Figure 3.c - Excerpts of SPGN input and tool generated DIF output for Range
processing graph for the SAR benchmark.

Sy

MCCI/UMD Final Report ' 25
STTR 03-003



%% Functional Requirements for azimuth processing

%%
%GRAPH( AZI_FR
GIP  =NFFT: INT,
RNG_FFT : INT
VAR =AZ_KERN :CFLOAT ARRAY(1024)
INPUTQ =AZI_N : CFLOAT
OUTPUTQ = AZI_OUT : CFLOAT)

%QUEUE( YFCO : CFLOAT )
%QUEUE( Y_AZ : CFLOAT)
%QUEUE( VMAUL : CFLOAT)

%% Cornerturn the data using a matrix transpose
operation.
%%
%NODE( CORNERTURN
PRIMITIVE = D_MTRANS .
PRIM_IN =NFFT,
RNG_FFT,
AZI_N THRESHOLD = NFFT*RNG_FFT
CONSUME = NFFT*RNG_FFT/2
PRIM_OUT =YFCO)
%NODE( FFT
PRIMITIVE = D_FFT
. PRIM_IN =NFFT,
UNUSED,
UNUSED,
UNUSED,
UNUSED,
YFCO THRESHOLD = NFFT*RNG_FFT
PRIM_OUT =Y_AZ)

DIF Generation

dif AZI_FR

{
topology

{
nodes =
CORNERTURN,
FFT,
CONVL,
IFFT;
edges =
YFCO (CORNERTURN, FFT),
Y_AZ (FFT, CONVL),
VMAUL (CONVL, IFFT);
}
interface
{
inputs =
AZI_N : CORNERTURN;
outputs =
AZI_OUT : IFFT,
}

parameter

{

NFFT = 1024;
RNG_FFT = 2048;
AZ_KERN;

production

{

YFCO =2097152;
Y_AZ =2097152;
VMAUL =2097152;
AZI_OUT = 1048576;

}

Figure 3.d - Excerpts of SPGN input and tool generated DIF output for Azimuth
processing graph for the SAR benchmark.

Machine generated DIF files for Range and Azimuth processing with a hand
generated DIF file for the top level graph were provided to UMD for import into
the Ptolemy environment. A manually programmed version of the top level graph
was necessary because Subgraphs are flattened in the Partition Builder tool and
do not exist as partition graphs. This limitation is easily correctable in phase Il.

[;j RASSP MINI SAR DISPLAY R

.113328370318BE9, -5.672582199684E8
.686243152456E9, -1.132239286739E9
.280892492213E9, -1.837179778052E9
.787030647091E9, -2.565079199379E9
.121469726315E9, ~-3.124321013999E9
.235633491442E9, -3.3399397173742E9
.126105298721E9, -3.132702116709E9
.795907223687E9, -2.578937710771E9
.292518065694E9, -1.852489499236E9
.698661416987E9, -1.145532955647E9

Color Map Range: 2.02+03 -> 2.0=2+09

NN W W WN N

Figure 3.e - SAR benchmark data generated from Ptolemy execution of imported
DIF plotted in common display format.

3.3 Import of machine generated DIF into Piolemy
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3.3.1 Exporting and Importing Issues

Developing the capability of translating across design tool specification
formats and the Dataflow Interchange Format is the most challenging aspect of
our work on DIF. ltis a difficult but important task to automate the exporting and
importing processes. First of all, graph topologies and hierarchical structures of
DSP applications must be captured in order to completely represent their
dataflow semantics. Furthermore, actor computations, parameters, and
connections must also be specified to preserve the functional behavior of

applications.

Figure 3.f illustrates the exporting and importing mechanism proposed by

UMD.

DIF Importer

Reader

DIF Representation

.

’’’’’’

- ~.
~,

. .

' Dataflow ™

< DIF Specification

Import

DIF Exporter

Writer

/ Dataflow N

DIF Representation

[JUpSE— [J—
e S~ - ~.
-~ .
/

DSP application in design
tool’s specification format

;’/ Actor :"{“; Graph “:- [ Graph [} Actor “‘,
\\Spemﬁcatlorll/\'\ Mapping / '\\ Mappin ";{Spemﬁcatlo y/
N r e EXpOl’t . j N o
R Y
Dataflow-based DSP Graphical Representation

Design Tool

Figure 3.f - Exporting and Importing Mechanism

3.3.2 Dataflow Graph Mapping

Dataflow-based DSP design tools usually have their own representations
for nodes, edges, hierarchies, etc. Moreover, they often use more specialized
components instead of the formal dataflow representations. Implementation
issues in converting the graphical representations of design tools to the formal
dataflow representations used in DIF are categorized as dataflow graph mapping

issues.

For example, Ptolemy Il has AtomicActor Objécts fof representing DSP
computations and CompositeActor objects for representing subgraphs. It uses
Relation objects instead of edges to connect actors. Each actor has multiple
/OPorts and those IOPorts are the connection points for Relations. A Relation
can have a single source but fork to multiple destinations. A regular /OPort can
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accept only one Relation but Ptolemy Il also allows multiport IOPorts that can
accept multiple Relations.

Clearly, special care must be taken when mapping Ptolemy |l graphical
representations to DIF representations. First, nodes in DIF do not have ports to
distinguish interfaces. Second, edges cannot support multiple destinations in
contrast to Relations. Third, the multiport property in Ptolemy Il does not
correspond exactly to any feature found in generic dataflow representations.

Although such tool-specific implementation problems in dataflow graph
mapping arise and are highly tool-specific, through careful use of DIF features
and specification configuration mechanisms, exporting without losing any
essential modeling information is still feasible. First, the DIF language is capable
of describing dataflow semantics regardless of the particular design tool used to
enter the semantics as long as the tool is dataflow-based, or supports a modeling
style that is sufficiently close to dataflow. Second, DIF representations can fully
realize the dataflow graphs specified by the DIF language. Based on these two
advantages, our approach to solving the dataflow graph mapping issues between
Ptolemy Il and DIF is to design an algorithm to traverse graphical representations
in Ptolemy Il, and then convert the Ptolemy Il components encountered during
the traversal into equivalent components or groups of components in DIF. After
that, our DIF front-end tool can write the DIF representations into textual DIF
specifications.

In this algorithm that maps Ptolemy Il graphical representations to DIF
representations, AtomicActors are represented by nodes and CompositeActors
are represented by hierarchies. Single-source-single-destination Relations are
represented by edges. For a multiple-destination Relation, a fork actor (please
refer to Section 6.4 in “Dataflow Interchange Format Version 0.2” technical report)
and several edges are used to represent it without losing any dataflow property
or functional characteristic. An actor's /OPorts and the corresponding
connections are specified as actor attributes. Even for a multiport IOPort,
multiple connections can still be listed in the corresponding DIF attribute.

3.3.3 Actor Specification

Specifying an actor's computation as well as all necessary operational
information is referred to as actor specification. It is an important issue in
exporting and importing between DIF and design tools as well as porting DSP
applications across tools because every actor’s functionality must be preserved.
The actor block is newly incorporated.into the DIF language version 0.2 for actor
specification. The DIF language syntax for the actor block is described in
Section 2.1.2.

To illustrate actor specification, we take the FFT operation in Ptolemy i
and MCCI’s Autocoding Toolset as examples. In Ptolemy Il, actors are
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implemented in Java and invoked through their class path. The FFT actor in
Ptolemy Il is defined in the ptolemy.domains.sdf.lib.FFT class of the Ptolemy I
SDF library. It has a parameter order and two |OPorts, input and output.
Therefore, in the corresponding DIF actor specification, the attribute order (with
attribute type PARAMETER) specifies the FFT order. In addition, attributes input
(with attribute type INPUT) and output (with attribute type OUTPUT) specify the
incomingEdgelD and outgoingEdgelD connecting to the corresponding [OPorts.
A full DIF actor block for a Ptolemy FFT actor is presented below:

actor nodelD {
computation = “ptolemy.domains.sdf.lib.FFT;
order : PARAMETER = integerValue or integerParameter|D;
input : INPUT = incomingEdgelD;
output : OUTPUT = outgoingEdgelD;
}

A FFT domain primitive in Autocoding Toolset, on the other hand, is referred to
by D_FFT. In the D_FFT domain primitive, parameter X specifies its input,
parameter Y specifies its output, and parameter N specifies its length. The
corresponding DIF specification for the D_FFT domain primitive is presented
below: ’

actor nodelD {
computation = “D_FFT";
N = integerValue or integerParameter|D;
X = incomingEdgelD;
Y = outgoingEdgelD;
}

3.4 Export of DIF specification of SAR Benchmafk

The DIF specification of the Autocoding Toolset SAR application is
presented in Appendix B. With the actor interchange specification presented in
Appendix A.20 and the actor interchange methods developed in the DIF package,
the actor mapping mechanism can translate the DIF specification of the
Autocoding Toolset SAR application to the DIF specification for Ptolemy I, which
is presented in Appendix B.21. Finally, the DIF-to-Ptolemy importer developed by
the UMD team imports the DIF specification in Appendix B.21 into Ptolemy L.

The ported graphical representation in Ptolemy Il is showed in Figure 3.g.

Figure 3.g(a) represents the top-level coarse grain graph of the SAR
application in Ptolemy Il. The composite actors (block with red borders)
RNG_FR and AZI_FR represent the range processing subgraph and the azimuth
processing subgraph, respectively. Figure 3.g(b) is the range processing
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RNG_FR graph and Figure 3.g(c) is the azimuth processing graph. The
node IFFT is mapped to the IFFT_SUBGRAPH in Figure 3.g(d).

The MCCI Autocoding Toolset specifies input/output procedures outside
its graph specifications. As a result, /0 actors are added manually in the
Ptolemy |l design to feed data samples as well as coefficients into the SAR graph
and to write and display the results. Figure 3.h shows the SAR application in
Ptolemy Il after adding I/O actors. The composite actor SAR_FR in Figure 3.h
actually represents the top-level SAR in Figure 3.b(a).

(a) SAR_IN RNG_FR

AZI_FR
‘ = SAR_OUT
— AZKEjQ ,
RCS

PAD '

RANGE_IN RCS_WTS

(b) ™~ - (;?WENSATE RANGE_OUT
YLOR_WTS WEIGHT COMPRESS | o = l h
» ' X
B -

c
( ) AZlIN CORNERTURN ~ FFT IFFT_SUBGRAPH

EF_—A;_OUT

(d) IFFT Scale

in SequenceToAray

Figure 3.g The SAR benchmark application in Ptolemy.
(a) SAR_FR graph. (b) RNG_FR graph. (c) AZI_FR graph. (d) IFFT_SUBGRAPH
graph
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SDF Director
SARDataReader

-

FilterCoefReader

> LineWrlter
CompositeActor

FilterCoefReader2 T — S}D I -

- ' :

SequencePlotter

AbsaluteValue

FillerCoefReader3

-

Figure 3.h The SAR benchmark application in Ptolemy after adding I/O actors

3.5. Import of Ptolemy DIF SAR specification into the Autocoding Toolset®
programming environment.

The conversion algorithm for translating graphical representations in
Ptolemy Il to equivalent DIF representations is outlined in Section 3.3.1. The
DIF-to-Ptolemy exporter is developed based on this algorithm and is able to
export the Ptolemy Il graphical representation of the SAR application to a DIF
internal representation. Then through the DIF front-end tool, the DIF
specification for the Ptolemy Il SAR application can be easily generated. This
Ptolemy Il to DIF exporting process is the reverse of the importing process
described in Section 3.4.

DIF specifications of the top level SAR graph and Range and Azimuth
subgraphs were generated from Ptolemy implementations by UMD investigators.
These graph specifications were translated into SPGN using the DIF import tool.
Figure 3.i shows excerpts of the DIF top level graph and the SPGN generated
from it by the import tool. Figure 3.j shows excerpts from the Range subgraph
import from DIF. Figure 3.k shows excerpts from the Azimuth graph import from
DIF. Complete listings of input DIF files and generated SPGN files are contained
in Appendix B.
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dif FR_SAR {
topology {
nodes = RANGE, AZIMUTH,;

edges = RNGOUT (RANGE,
AZIMUTH);

}
interface {
inputs = SAR_IN : RANGE,
TAYLOR : RANGE,
RCS : RANGE,
AZKERN : AZIMUTH,;

outputs = SAR_OUT : AZIMUTH,

}

parameter {
NFFT_RNG = 2048;
NFFT_AZI = 1024,
N_R = 2032;
NFILL = 16;

}

refinement {
RNG_FR = RANGE;
RANGE_IN : SAR_IN;

SPGN Generation

%GRAPH (FR_SAR
INPUTQ =
SAR_IN
TAYLOR
RCS
AZKERN
OUTPUTQ = SAR_OUT
)
%GIP (NFFT_AZI : INT
INITIALIZE TO 1024
)
%GIP (NFFT_RNG : INT
INITIALIZE TO 2048
)
%GIP (NFILL : INT
INITIALIZE TO 16
) .
%GIP (N_R: INT
INITIALIZE TO 2032
)
%QUEUE (RNGOUT)
%SUBGRAPH (RANGE

Figure 3.i - Excerpts of top level DIF specification of the SAR benchmark and the
SPGN translated from it by the DIF import tool.
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dif RNG_FR {
topology {

nodes = PAD, WEIGHT, COMPRESS, COMPENSATE;

edges = PADDED (PAD, WEIGHT),
WEIGHTED (WEIGHT, COMPRESS),
COMPRESSED (COMPRESS, COMPENSATE),
}
interface {
inputs = RANGE_IN : PAD,
TAYLOR_WTS : WEIGHT,
RCS_WTS : COMPENSATE;
outputs = RANGE_OUT : COMPENSATE;
}
parameter {
NFFT;
NR;
NPAD;
NRNG = 512;
PAD_VAL = 0.0;
}
actor PAD {

SPGN Geeration

%GRAPH (RNG_FR

GlP=
NFFT
NPAD
NR

INPUTQ =
RANGE_IN
TAYLOR_WTS
RCS_WTS

OUTPUTQ =
RANGE_OUT

)
%GIP (NRNG : INT
INITIALIZE TO 512
)
%GIP (PAD_VAL : FLOAT
INITIALIZE TO 0.0
)
%QUEUE (PADDED)
%QUEUE (WEIGHTED)

Figure 3.j - Excerpts of top level DIF specification of the SAR benchmark Range
Subgraph and the SPGN translated from it by the DIF import tool.
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dif AZI_FR {
topology {

%GRAPH (AZI_FR

IP =
nodes = CORNERTURN, FFT, @
CONVL, IFFT; NFFT
edges = YFCO (CORNERTURN, RNG_FFT
FET), INPUTQ =
Y_AZ (FFT, CONVL), AZI_IN
VMAUL(CONVLJFFD; AZ_KEHN

}

OUTPUTQ = AZI_OUT

interface { )
inputs = AZ|_|N . CORNERTURN, %QUEUE (YFCO)
AZ_KERN : CONVL; %QUEUE (Y_AZ)
outputs = AZI_OUT : IFFT; %QUEUE (VMAUL)
) SPGN Generation  %Nope (CORNERTURN
parameter { PRIMITIVE =
NFFT: D_MTRAN
RNG_FFT: PRIM_IN =
} PRIM_OUT =
actor CORNERTURN { M = NFFT
computation = "D_MTRAN"; N =RNG_FFT
M = NFFT; X=AZILIN
Y = YFCO

N =RNG_FFT;

Figure 3.k - Excerpts of top level DIF specification of the SAR benchmark
Azimuth Subgraph and the SPGN translated from it by the DIF import tool.

.11334E+09, -5.67194E+08
.68657E+09, -1.13206E+09
.28101E+09, -1.83712E+09
.78720E+09, -2.56485E+09
.12169E+09, -3.12429E+09
.23570E+09, -3.33972E+09
.12633E+09, -3.13268E+09
.79604E+09, -2.57867E+09
.29266E+09, -1.85242E+09
.69888E+09, -1.14531E+09

R NNWWWND DR

R RASSP MINI SAR DISPLAY

Color Map Range: 2.0e+08 -> 2.0e+08

Figure 3.1 - SAR benchmark output from DIF specification

Figure 3.1 shows the output display and a excerpt of the data produced from
execution of the version of the SAR application imported from the Ptolemy DIF
specification. Comparison of this figure with figure 3.e show that Ptolemy
execution of the SAR graph imported from PGM via DIF and the autocoded
execution of the benchmark of the version of the benchmark imported from the
DIF specification of the Ptolemy implementation differ only in precision errors.
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The SAR benchmark has made a round trip from PGM to Ptolemy and
from Ptolemy to PGM via DIF.

3.6 Importing Multi-Rate Filter Benchmark from Ptolemy

The multi rate filter bank application is developed using Ptolemy Il. It
implements an eight-level perfect reconstruction one-dimensional filter bank
based on the biorthogonal wavelet decomposition. Figure 3.m shows the
graphical representation of this filter bank in Ptolemy II. Through the DIF-to-
Ptolemy exporter developed by the UMD team, the DIF specification of this filter
bank application is automatically generated. The complete specification is
presented in Appendix B.22.

SoiDirecior kmglemsnt an pight-level perlect rectnatructnn sne-dimenasional Commutsir Prasialar
N

firer bank; hasad an the hisrthagoaat wavelat dacompasition Q"G FloWriter
( Y E ct -
62 + sl

GaquarcaPkaar

Rconstncyon_Fitac_pair!

Repantl ((4.1]

eSe

Hscanstncta Fitar Paird

Rapoat2(e4,1)

Figure 3.m The filter bank application in Ptolemy I

A second import experiment was conducted as part of this study. The multi-rate
filter is a standard Ptolemy benchmark. Figure 3.m shows the Ptolemy iconic
representation of this application. DIF was generated for this benchmark. Figure
3.nis an excerpt of the DIF generated from the Ptolemy multi-rate filter
benchmark. The full listing is included in appendix B.
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dif Truncated Sinewave {

topology {
nodes = Ramp,
Pulse,
TrigFunction,
MultiplyDivide,
${center/2}$;

edges = e0 (Ramp, TrigFunction),
el (Pulse, S{center/2}$),
e2 (TrigFunction, MultiplyDivide),
e3 (${center/2}$, MultiplyDivide);
}
interface {
outputs = output:MultiplyDivide;
}
attribute vergilSize { = [600,400]; }
attribute vergillocation { = [232,252]; }
attribute frequency { = 0.6283185307179586; }
attribute center { = 50; }
attribute lengthOfSineBurst { = 50; }
actor Ramp {
computation = "ptolemy.actor.lib.Ramp";
firingCountLimit : PARAMETER = 0;
init : PARAMETER -79.57747154594767;
step : PARAMETER = (0.6283185307179586;
output : OUTPUT = e0;

}
actor Pulse {
computation = "ptolemy.actor.lib.Pulse";
firingCountLimit : PARAMETER = 0;
indexes : PARAMETER =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26
,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,5
0};
values : PARAMETER =
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1%,1,%,%,1,1,1,1,1,1,1,1,1,1,
i,1,1,1,1,1,1,1,22,2,1,1,1,1,1,0};
repeat : PARAMETER = false;
output : OUTPUT = el;
}

Figure 3.n - Excerpt from DIF specification of Ptolemy multi-rate filter benchmark

The DIF version was imported into the Autocoding Toolset® environment
by translating the DIF specification to SPGN with the DIF import tool. Figure 3.0
shows an excerpt of the SPGN translation of the top level graph The full listing
is included in appendix B. v oeea s -
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$GRAPH (FilterBank )

$GIP ( vergilCenter : FLOAT ARRAY (2)
INITIALIZE TO {536.5,439.5}
)

$GIP ( _vergillocation :
INITIALIZE TO {-4,12}

)

INT ARRAY(2)

O
]
2GIP (nolterations : INT
INITIALIZE TO 1600
)

$QUEUE (e35)
O
O

$QUEUE (e96)

$SUBGRAPH (Truncated Sinewave
GRAPH = Truncated_ Sinewave
GIP =
INPUTQ =
OUTPUTQ =

output = e35

)

$SUBGRAPH (Analysis_Filter Pairl
GRAPH = Analysis_Filter Pairl
GIp =

INPUTQ =
input = e36
OUTPUTQ =
outputl = e38
output2 = e39
)
O
0

Figure 3.0 - SPGN listing of the top level multi rate filter graph translated from

DIF input.

The multi rate filter application includes four subgraphs,
Analysis_Filter_Pair, PreScaler, Reconstruction_Filter, and Truncated_Sinewave.
Excerpts of the SPGN files translated from these DIF files are shown as figures
3.p through 3.s. Complete listings are included in appendix B.
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$GRAPH (Analysis_Filter Pairl
INPUTQ = input
OUTPUTQ =
outputl
output2
)

$GIP ( vergillocation : INT ARRAY(2)
INITIALIZE TO {211,474}
)

$GIP (_vergilSize : INT ARRAY (2)
INITIALIZE TO {600,400}
)

$GIP (highpass : <UNKNOWN>
INITIALIZE TO gmf.highpass.filter
)

$GIP (lowpass : <UNKNOWN>
INITIALIZE TO amf.lowpass.filter

)

3QUEUE (ed)
$QUEUE (e5)

$NODE (FIR_highpass
PRIMITIVE = ptolemy.domains.sdf.lib.FIR
PRIM IN =
PRIM OUT =
decimation = 2
decimationPhase = 1
interpolation = 1
taps = {0.001224,-7.0E-4,-0.011344,0.011408,0.023464,-0.001747, -
0.044403,-0.204294,0.647669,-0.647669,0.204294,0.044403,0.001747,-
0.023464,-0.011408,0.011344,7.0E-4,~-0.001224}
input = e4
output = outputl
)
$NODE (FIR lowpass
PRIMITIVE = ptolemy.domains.sdf.lib.FIR
PRIM IN =
PRIM OUT =
decimation = 2
decimationPhase =1
interpolation = 1
taps ={0.001224,-6.98E-4,-0.011833,0.011682,0.071283,-0.030986, -
0.226242 ,0.069248,0.731574,0.73574,0.0692 48,-022624 2, -
0.030986 ,0.071283,0.01168 2,-0011833 ,-6.8BE-4,0.01224 }

Loy

Figure 3.p - Excerpt translated from DIF specification of Analysis_Filter_Pair
graph

MCCI/UMD Final Report 38
STTR 03-003



$GRAPH (PreScaler
INPUTQ = input
OUTPUTQ = output
)

$GIP ( vergillocation : INT ARRAY (2)
INITIALIZE TO {181,466}
)
$GIP ( vergilSize : INT ARRAY(2)
INITIALIZE TO {600,400}
)
$GIP (gain : INT
INITIALIZE TO 100
)
$GIP (offset : INT
INITIALIZE TO 128
)

$QUEUE (e32)
$QUEUE (e33)
$QUEUE (e34)

$NODE (Scale
PRIMITIVE = ptolemy.actor.lib.Scale
PRIM IN =
PRIM OUT =
factor = 100
scaleOnleft = true
input = input
output = e32
)
$NODE (Limiter
PRIMITIVE = ptolemy.actor.lib.Limiter

PRIM IN =

PRIM OUT =
bottom = -128.0
top = 127.0
input = e32

output = e33
)
$NODE (AddSubtract
PRIMITIVE = ptolemy.actor.lib.AddSubtract
PRIM IN =
PRIM OUT =
output = output
)

Figure 3.q fExcerpt translated from DIF épefc‘ifiﬂcfé‘”"ci:on of PreScaler gra‘;')"h
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$GRAPH (Reconstruction Filter Pairl
INPUTQ =
inputl
input2
QTPUTQ = autput
)

%GIP ( vergillocation : INT ARRAY (2)
INITIALIZE TO {232,252}
)

%GIP ( vergilSize : INT ARRAY(2)
INITIALIZE TO {600,400}

)

%GIP (highpass : <UNKNOWN>
INITIALIZE TO gmf.highpass. filter
)

$GIP (lowpass : <UNKNOWN>
INITIALIZE TO gnuf.lowpass.filter

)

SQUEUE (el8)
SQUEUE (el9)

$NODE (FIR highpass R
IRIMITIVE = ptolemy.domains.sdf.lib.FIR
ERIM IN =
ERIM OUT =
decimation = 1
decimationPhase = 0
interpolation = 2
taps = {~0.001224,-6.98-4,0.011833,0.011682,-0.071283, -
0.030986,0.226242,0.069248,-0.731574,0.731574,-0.069248,~
0.226242,0.030986,0.071283,-0.011682, -0. 011833, 6.98E~4,0.001224}
input = inputl
output =el8
)
$NODE (FIR_lowpass R
RIMITIVE = ptolemy.domains.sdf.lib.FIR
ERIM IN =
RIM OUT =
decimation = 1
decimationPhase = 0
interpolation = 2
taps = {0.001224,7.0E-4,-0.011344,-0.011408,0.023464,0.001747, -
0.044403,0.204294,0.647669,0.647669,0.204294, -
0.044403,0.001747,0.023464,-0.011408, -0. 011344, 7.0E~4,0.001224}
input = input2
output =el9
)

L d

Figure 3.r - Excerpt translated from DIF specification of Reconstruction_Filter
. graph
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$GRAPH (Truncated Sinewave
OCUTPUTQ = output
)

$GIP (_vergillocation : INT ARRAY(2)
INITIALIZE TO {232,252}

)
$GIP (_vergilSize : INT ARRAY(2)
INITIALIZE TO {600,400}

)
%$GIP (center : INT
INITIALIZE TO 50

)
%GIP (frequency : FLOAT
INITIALIZE TO 0.6283185307179586

)

$GIP (lengthOfSineBurst : INT
INITIALIZE TO 50
)

$QUEUE (
$QUEUE (
$QUEUE (
$QUEUE (

$NODE (Ramp
PRIMITIVE = ptolemy.actor.lib.Ramp
PRIM IN =
PRIM OUT =
firingCountLimit = 0
init = -79.57747154594767
step = 0.6283185307179586
output = e0

Figure 3.s - Excerpt translated from DIF specification of Truncated_Sinewave
graph

While this SPGN produced is perfectly correct, it is incomplete for
autocoding. Note that in the SPGN translations the characters <UNKNOWN>
appear. The translator inserts this prompt where needed information is missing.
Also note that the primitives in all the node statements refer to actors in the
Ptolemy library, e.g. ptomemy.actor.lib.Ramp. There are not exact equivalents
for all Ptolemy primitives specified in the Domain Primitive Library. Completing
the specification to a state where executable code can be generated would
involve implementing Domain Primitive-equivalents for-each Ptolemy primitive
referenced. MCCI did not continue this effort since the SPGN produced is in the
correct form and implementing Domain Primitives for all uncovered Ptolemy
primitives would exceed the phase | scope. :
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This experiment clearly identified issues that must be addressed in phase
Il. References to vendor specific primitive library elements in both tools points to
the need for a common primitive library. A second need became clear. The
functions Analysis _Filter_Pair and Reconstruction_Filter were each repeated
seven times, differing only by inputs and outputs. The absence of a capability to
specify arrays of graph entities forced the translation into seven unique SPGN
files for each function. For large applications with multiple channels of similar
processing, this could cause generation of an intractable number of SPGN files.
These short comings not withstanding, DIF representations of a representative
application designed with Ptolemy was readily translated into a correct SPGN
representation which can be realized as executable code with the addition of
appropriate Domain Primitives to the Autocoding Toolset's® library.
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Section 4 DIF Performance Analysis
4.1 DIF Feasibility Version Performance Analysis

The application domain for dataflow specifications includes specifying for
compilation on single processors and specifying software architectures for
parallel architectures. Dataflow specifications contain information not found in
control flow specifications (flow chart like specifications) that may be exploited to
obtain optimized scheduling and use of memory. To be deterministic, software
architectures for processing continuous streams of data must satisfy the Karp
and Miller mathematical model for dataflow even if the architectures "virtual
circuit" is arrived at through low level, explicit programming of execution
synchronization on the architectures processors with transfer of data among
them. Dataflow provide a high level means of explicitly specifying architecture
level "virtual circuits" of the applications executable components. The University
of Maryland's research has been focused on optimizing compilation of dataflow
graphs on single processors utilizing dataflow information. MCCl's focus has
been on aiding/automating software architecture specifications from systems of
dataflow graphs. To be broadly accepted by industry, DIF must be well suited for
the full range of application specification.

MCCI undertook the task of analyzing DIF v0.2 capability to efficiently
specify HPC applications. While Turing complete, the demonstration version of
DIF does not yet contain language features necessary to efficiently specify the
full range of applications anticipated. MCCI has implemented a representative
set of production applications in the sonar signal processing, radar signal
processing, and high performance computing in the course of developing the
Autocoding Toolset®. These are applications with large and messy topologies
(1000 nodes +), multiple operational modes, and requirements for targeting
multiple hardware architectures. Our analysis of DIF focused on engineering
convenience features needed by DIF to become and "industrial strength”
language capable of efficiently specifying iarge industrial applications.
Additionally, we focused on information needed to translate DIF into strongly
typed specifications such as PGM. While information needed for efficient
compilation, such as token data types, may be inferred from other elements of
the DIF specification, to be broadly acceptable, this information should be made
explicit. It can always be ignored if unneeded for a specific target.

PGM is a strongly typed specification requiring either explicit specification
of all information needed to determine graph execution behavior (node execution

~.. sequences and memory states) and data communication requirements. The DIF- = -

feasibility version does not. The first part of our analysis consisted of
determining the types of information that had to be added to the PGM
specifications translated from DIF. Which the SPGN (textual form of PGM
graphs) generated from DIF was completely legal SPGN, not all information
needed to generate executable code by the Autocoding Toolset® was included.
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This information was added by manual editing. Once added, imported
applications autocoded without error. Figure 4.a shows the imported SPGN for
the Range subgraph. Yellow comment boxes have been added to the figure to

commenting on the additional information needed to autocode the graph into
executable code.

$GRAPE (RNG_FR
GIP =

i [ s Rz oy fomtoor) |
NR /
INPUTQ =

RENGE_IN

TAYLOR_WTS “ Local GIPs are’ als 2l guesS DIF Npar 18O wi

- /— Could be VARs or formal GlPs w1th GV: set values
OUTPUTQ = RANGE_OUT .
)

$GIP (NRNG : INT
INITIALIZE TO 512

)

$GIP (PAD_VAL : FLOAT
INITIALIZE TO 0.0
}

$QUEUE (PADDED)
$QUEUE (WEIGHTED)
$QUEUE (COMPRESSED)

$NODE (PAD
PRIMITIVE = D_VFILL
PRIM_IN =
PRIM_OUT =
= NR
NPAD
PAD_VAL
RANGE_IN
PADDED

- Noway to-specify queue initialization values; w:
v ‘can, infe‘rl the ne‘ed"for

KX <oz
FU I I |

)

$NODE (WEIGHT
PRIMITIVE = D_VMUL
PRIM_IN =

PRIM_OUT =
N = NFFT
X = PADDED
Y = TAYLOR_WTS
Z = WEIGHTED

$NODE (COMPRESS

PRIMITIVE = D_FFT
PRIM_IN =
PRIM_OUT =

N = NFFT

FI = 0

X = WEIGHTED

Y = COMPRESSED

)

$NODE (COMPENSATE -
PRIMITIVE = D_VMUL e . NEPs can be exiracted from the DIF: Nconsume()
E‘;i;‘]—ég;: . specification if it is available. Further,: structuredNI
N = NFET - details can be draven from usedefined attributes of
X = CCMPRESSED _ the cxpected format (NthresholdO NreadO ete):
Y = RCS_WTS
2 j&RANGE__OUT AT T e Y e LU —
]
YENDGRAPH

Figure 4.a - Imported DIF with Analysis Comments.
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instance, it is perfectly legal for there to be no consumption specification.
Also, a DIF node with a refinement (indicating subgraph) may also have an actor
with a computation and params (indicating node).

Figure 4.b illustrates editing inserting the needed information. SPGN
added with manual editing is highlighted in red. Comments on the edits are
preceded with %%.

%GRAPH (FR_SAR %GRAPH (RNG_FR

INPUTQ = GIP =
SAR_IN : CFLOAT, NEET « INT,
TAYLOR : CFLOAT ARRAY(2048), %% these 2 items were GIPs in NPAD : INT,

%%source SPGN NR:INT

RCS : FLOAT ARRAY(2048), %% -> changed to Qs due to limitations  \\pyTQ =

%%  of DIF "interface” and " params"
%%  statements?

AZKERN : CFLOAT ARRAY(1024) %% was a VAR in source SPGN

%% -> also changed for <above> reason?

RANGE_IN : CFLOAT,

TAYLOR_WTS : CFLOAT ARRAY(2048),

RCS_WTS :FLOAT ARRAY/(2048)
OUTPUTQ = RANGE_OUT : CFLOAT

OUTPUTQ = SAR_OUT : CFLOAT

)
) °o .
%GIP (NFFT_AZI: INT %GIP (NFNG : INT

INITIALIZE TO 1024 ;NITIALIZE TO 512
) 9 . %%

%GIP (NFET_RNG : INT %GIP (PAD_VAL : CFLOAT OZ’OZCPFA'\_%?\\{I_AL should be
INITIALIZE TO 2048

INITIALIZE TO <0.0EO, 0.0E0>

)
%GIP (NFILL : INT

)
INITIALIZE TO 16 %QUEUE (PADDED : CFLOAT)

%QUEUE (WEIGHTED : CFLOAT)
%QUEUE (COMPRESSED : CFLOAT)

%GIP (N_R : INT o
INITIALIZE TO 2032 AR o VFILL
) PRIM_IN =
%QUEUE (RNGOUT : CFLOAT NR
INITIALIZE TO %% inttialization (amt & vals) NPAD
(NFFT_RNG*NFFT_AZI)/2 OF <0.0E0,0.0E0>) %% lost in DIF UNUSED. %9% UNUSED param missing in
representation DIF '
%SUBGRAPH (RANGE PAD VAL
GRAPH = RNG_FR RANGE "'\'
* THRESHOLD = NRNG*NR %% no NEPS in DIF
‘ PRIM_OUT =

Figure 4.b - Manual Edits to Imported SPGN for SAR and Range Processing
Graphs

As can be seen in the example of figure 4.a, data token type and memory
state information required to compile an executable with a static memory map
was added to the imported SPGN. Called modes in SPGN, token types for
queues, variable, and parameters had to be added manually. Initialization was
also specified for the queue RNGOUT to insure initial states of queues
connecting range and azimuth processes. While DIF is actor independent, UMD
used the Ptolemy actor set in their specification. Actors mimicking MCCI domain
Primitives were added to the Ptolemy library for the SAR application. However,
the actor parameter specifications are name ordered while Domain Primitives are
place ordered. An UNUSED had to be added to preserve place ordering in the
imported subgraphs. Also Node Execution Parameters (NEPs) not included in
the specification of queue inputs to actors had to be added. This is an example
of information that may be inferred from Ptolemy actor specifications but must be
made explicit in PGM.

4.2 Common Domain Actor Library

MCCI/UMD Final Report 45
STTR03-003



4.2 Common Domain Actor Library

The most significant problem encountered in exchanging graphs between
programming environments was the lack of a common library of the executable
core of dataflow graph nodes. DIF is actor independent, i.e. it specifies dataflow
topology not functionality. Functionality comes from the specifications of the
actors referenced in the dataflow graph specification. This comment applies to
dataflow graphs in general. However to target a specific programming
environment, members of the programming environments actor/primitive library
must be referenced. This problem was largely avoided in the SAR graph
exchange experiment by the addition of actors to the Ptolemy library that
mimicked the Domain Primitives of the PGM specification. However examination
of the multi rate filter code imported from Ptolemy clearly shows the problem.
Inserted editing (high lighted in red) includes actor specifications not included in
the Domain Primitive library. Autocoding this graph would require
implementation of Domain Primitives mimicking Ptolemy primitives.

The Actor Interchage Format was developed by the UMD team as a
potential solution to this actor compatibility problem. Techniques for transferring
DSP applications across design tools with a high degree of automation have also
been investigated by the UMD team. Our work in this area motivates a new
paradigm of porting DSP applications across dataflow-based design tools
through the use of interchange specifications. The portability of DSP applications
across design tools is equivalent to portability across all underlying embedded
processing platforms and DSP code libraries supported by those tools. Such
portability would therefore clearly be a powerful capability if it can be attained
through a high degree of automation, and a correspondingly low level of manual
or otherwise ad-hoc fine-tuning. The key advantage of using a DIF specification
as an intermediate state in achieving such efficient porting of DSP applications is
the comprehensive representation in the DIF language of functional semantics
and component/subsystem properties that are relevant to design and
implementation of DSP applications using dataflow graphs.

Except for information pertaining to the detailed functionality and operation
of individual actors, a DIF specification for a DSP application should have the
same essential “meaning” independent of what particular tool the specification is
presented to (assuming the tool supports all of the features required by the
application model). Therefore, porting DSP applications through DIF can be
achieved by interchanging the tool-dependent actor information along with the
tool-independent dataflow information. For this purpose, we have deveioped an

2+ . actor mapping capability, based on a novel actor interchange format (AlF), in DIF -

that provides an infrastructure for automatically converting actor specifications
from tool to tool based on the given actor interchange information and conversion
protocols.

MCCI/UMD Final Report 46
STTR 03-003



The actor interchange format is a specification format dedicated to
specifying tool-specific information pertaining to actors in dataflow graphs. Its
syntax supports:

a. Mapping from a source actor to a target actor, including any optional
conditions (e.g., on parameter values) that trigger the particular mapping.

b. Mapping from a source actor to a sub-graph consisting of a set of target
actors, including optional triggering conditions.

c¢. The mapping from a source actor attribute (or set of attributes) to a
target actor attribute, including optional specification of an arbitrary-complexity
computation for automatically determining the target attribute value from a given
set of source attribute values.

Because different design tools usually provide different sets of actor
libraries, problems can arise in the porting process due to acfor absence, actor
mismatch, and actor attribute mismatch. The actor interchange format can
significantly ease the burden of actor mismatch problems by allowing a designer
a convenient means for making a one-time specification of how multiple modeling
components in the target design tool can construct a sub-graph such that the
subgraph functionality is compatible to the source actor. In addition to providing
automation in the porting process, such conversions reduce the need for users to
introduce new actor definitions in the target model, thereby reducing user effort
and code bloat.

Similarly, actor interchange methods can solve attribute mismatch
problems by evaluating a target attribute in a consistent, centrally-specified
manner, based on any subset of source attribute values. For absent actors, most
design tools provide ways to create actors through some sort of actor definition
language. Once users determine equivalent counterparts for absent and
mismatched actors, our actor mapping mechanism can take over the job cleanly
and efficiently.

Figure 4.a illustrates the porting mechanism, it consists of three steps:
exporting, actor mapping, and importing.
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Figure 4.a - Porting mechanism through DIF

For a complete introduction of the DIF porting mechanism, including the actor
interchange format, and a demonstration example, please refer to Section 7 and
Section 8 in “Dataflow Interchange Format Version 0.2" technical report.

While very helpful in mapping between primitive/actor libraries in different
environments, the Actor Interface Format does not address the combinatorial
explosion that will occur if we are successful in having DIF widely accepted by
many tool vendors. Potentially, every tools library would have to be mapped into
every other library. The need for including a functional library specification in the
full performance version of DIF became clear during the feasibility investigation.
At a minimum, this will reduce the potential all to all mapping problem to an all to
one problem. However, if functional specifications of an existing and broadly
accepted standard primitive library are used as the DIF common Domain Actor
library, the problem may be avoided altogether. The VSIPL is the obvious
candidate for this standard. VSIPL provides a standard math library supporting
code exchange between different vendors processors. The VSIPL standard
includes a functional specification for each math library primitive, a calling
specification, and a reference implementation. Vendors supporting VSIPL may
implement theif own performance version of the library routines utilizing the
specification and calls or compile the reference implementation. A dataflow
graphical equivalent of this approach will support a VSIPL based common
Domain Actor library for DIF. Domain actors with VSIPL functional specifications
and VSIPL calling specifications incorporated in the Domain Actor specifications
may be implemented in target environments by mapping the Domain Actor to an
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equivalent in the target environment or importing the reference implementation.
Meeting the VSIPL requirement to produce computational results identical to the
reference primitives can be met while preserving the capability to optimize
performance using the unique information in dataflow graph specifications.

4.3 DIF Feasibility Capabilities Analysis

MCCI also analyzed the feasibility version of DIF from the prospective of
efficiently specifying typical very large applications targeting parallel architectures.
While Turing complete, the feasibility version of DIF lacks certain capabilities
necessary to developing compact, reusable specifications for large production
codes. Engineering convenience features are needed to avoid specification for
"in-line" graph topology for multi-channel systems and repetitive SPGN files for
like subgraphs. Features supporting specification of multi mode, reusable
specifications are needed in the full performance version of DIF. These features
include:

a. Specification of Token Data Types:; edges, parameters, interface.

The full performance version of DIF should include the capability to specify data
token types for all supported forms of memory specifications. This includes the
graphs edges conveying data between graph nodes. These will either specify
executable code memory states or inter-processor data transfers. In either case,
memory size requirements must be specified.

b. Arrays of entities: nodes, edges, parameters.

While unnecessary for graphs targeting single processors and single channel
applications, specification of arrays of entities is essential to compact
specification of large multi-channel applications. For example modern submarine
sonar beamforming applications have on the order of 1000 channels of
essentially identical processing, differing only by inputs, outputs and parameters
governing beam steering. Specifying each beams channel independently as
currently required would produce intractably complex DIF and SPGN file
systems. Autocoding each independent file would severely complicate the task
of autocoding the application with ours of other tools. It is considered highly
advantages to add an entity array specification capability to DIF,.

c. Complete interface; parameters as well as edges

=..... Ptolemy graphs are intended to execute singly on data included in-existing-data:.--

files. Production applications must include multiple graphs which may be made
active, or inactive, in combinations. Multiple copies of the same graph, with each
instance parameterized or sourced differently must be supported. Data sources
and sinks must include a number of devices and software structures including
other graphs. Controls must exist to modify application configuration, data
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sources and sinks, internal dataflow, and graph functional behavior "on the fly".
All aspects of application configuration and behavior must be capable of change
by external control while deterministic execution is maintained. For this reason,
DIF must be expanded to include support for complete external interfaces, i.e.
edges, parameters, and run time variable controls.

d. Edge initialization

It is often convenient to specify initial graph state as tokens on internal queues.
These tokens may or may not have to have values assigned. If graphs are not
initialized, the behavior model for partitions created by the user that include
uninitialized queues may have a transient component to their behavior model.
Unless necessary for some functional reason, this unnecessarily complicates
code generation for its realizations. If the queues are contained in a circuit, lack
of initialization may block the graph creating an illegal and untransiatable
condition. Initializing with tokens with values left unassigned may create a
unwanted transient in the values of output data even though the behavior model
is valid. The capability to specify edge initialization in the full performance
version of DIF is recommended.

e. More sophisticated edge behavior

(1) threshold, read, offset read data

While only produce and consume amounts must be specified for edge source
and sink to fully a scheduling behavior model for dataflow graphs, it is desirable
to ad the capability to specify more sophisticated edge behavior in the full
performance version of DIF. Independent specification of Threshold and Read
edge parameters allows the intentional introduction of lags between node
executions in parallel data streams or to accumulate data to allow primitive
functions to iterate execution over a large data set. Specification of a data offset
amount further increases node execution fiexibility. For example, multiple
parameter sets may be passed to nodes via queues and the offset parameter
used to select the correct set.

(2) offset, read, consume expression support for variable
characteristics

Support for expressions for edge parameters, except threshold, support a wide

-range of external controls of graph execution.behavior and-source.and:sink node - -

functional behavior. Dataflow may be modified on the fly by edge controls either
computed by the graph or externally set. Dynamic application behavior is readily
specifiable with this capability. Making threshold variable has proved

problematic. The issue is synchronizing its computation with node execution, an
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inherent race condition. MCCI has never come up with a practical way to support
run time variable thresholds even when doing so would simplify specifications.
This is different than specifying enumerated sets of threshold values at
translation time and switching logic to switch between code segments realizing
behavior models for each enumerated value.

(3) Dangling edges: no sink and/or source

The capability to leave either the head or tail of an edge dangling, i.e.
unconnected has proved highly useful. Leaving an edge tail unconnected but
connecting the head in effect creates a private variable for the involved node.
While a variable could be used for this purpose, reading data from queues in
much faster than reading from variable. These queues are typically assigned a 0
value for threshold and consume, a read amount appropriate for the node
function, and possible variable offset values to select among multiple data sets
assigned to the edge during initialization.

The capability to leave edge heads unconnected provides a convenient means to
dump data in the "bit bucket" if temporarily unneeded. Used in conjunction with
external controls governing inter graph connectivity, it provides a convenient
means to drop data from inactive elements of the application.

f. More sophisticated node execution behavior

Node execution models should be extended to include a control interface
between inputs and the underlying primitive. This control interface should be
capable of sending and receiving synchronization signals (the equivalent of
semaphores) and setting and evaluating expressions associated with edge
parameters and primitive controls. The interfaces should have a capability to
perform simple arithmetic calculations as well. This capability supports
enhancing the flexibility of dataflow graph execution. For example, the
synchronization of reading and writing graph variables with the execution of
nodes using variable values has long been problematic for pure dataflow
environments. The addition of control interfaces supporting synchronization
signals to nodes allows enforcing executions that will ensure deterministic
assignment of values to variables before the values are used.

g. Multi-mode graphs

Production codes for modern weapons systems are frequently multi modal.
Applications must be seamlessly reconfigurable among-execution many
execution behaviors. The ability to specify multiple graph behavior modes is
considered essential to the full performance version of DIF

(1) Production control; variable output and “valving”
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The capability to vary production amounts by either expressions evaluated at
node execution of on/off controls set by external control or internally computed
variables provides the capability to partition dynamic dataflow applications into
systems of static dataflow partitions. Nodes with variable production amounts of
valves must be on the edge of partitions. This capability allows the use of the
full range of static behavior models for efficient translation to executable code
while maintaining dynamic behavior at the application level to support data
dependent functionality and application reconfiguration.

(2) Parameter characteristics; Static vs. variable values, value

Application may frequently be faced with the conflicting need to make parameters
governing graph execution behavior static to enable translation to control flow
executable realizations while at the same time support multiple sets of
parameters for different functional behavior. Unfortunately the different
parameter sets impose different execution behaviors. In order to have this both
ways, parameter sets may be enumerated and muitiple behavior models created
matching parameter set values. Realizations may include multiple code sections,
one per behavior, and switching logic to select the appropriate segment
depending on the value set in use at node execution.

If variables affect only functional behavior, i.e. data token values only, they may
be made variable in a set of otherwise fixed value parameter sets.

(3) Hidden graph elements

Hidden graph elements is a concept currently under investigation that may be a
generalized approach to modifying active graph topology under external control
that is the equivalent of changing valve control value sets. Its use to accomplish
one or more of the above requirements for the full performance version of DIF
should be pursued.
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Section 5 Study Conclusions
5.1 Study Results

Phase | of this STTR was a study to determine the feasibility of developing
a common, vendor neutral dataflow language that can be supported by all
dataflow tools and programming environments as a standard for dataflow graph
exchange. Our working hypothesis is that Dataflow Interchange Format, DIF,
initiative undertaken at the University of Maryland could be developed as such a
standard. Our investigation was partitioned into two areas:

a. Development of a feasibility version of DIF, and

b. Demonstration of the feasibility of graph exchange between different
dataflow programming environments using DIF.

DIF version 0.2 was developed by the University of Maryland as an
expansion of the exploratory version 0.1. DIF has been shown to be a Truing
complete dataflow language. Prototype tool support was developed for DIF in
MCCI's Autocoding Toolset® to export and import DIF specifications from and to
PGM graphs in the notational SPGN format. Corresponding tools were
developed or extended by the University investigators to import and export DIF
graphs into and from Ptolemy data structures. MCCI's Autocoding Toolset® and
the University of California's Ptolemy, now used by the University of Maryland in
their work, were independently developed from a common mathematical model.
MCClI's tools use a language representation developed by the Navy which has
spawned a number of commercial dataflow tools and environments. Likewise the
Ptolemy work has inspired a number of dataflow research efforts in other
universities and laboratories. Development of a notational form of dataflow graph
specification that can be supported by both environments is very clear indication
of its general supportability by all dataflow tools and environments. It is likely that
some language features planned for a full performance version of DIF may not
be necessary or supported for some environments. Unneeded information in DIF
specifications can be ignored without invalidating the remaining specification.
And proper subsets of DIF specifications can be imported and expanded in the
destination environment.

It is considered that development of DIF v0.2 with associated prototype
tool support in independent dataflow programming environments demonstrates
the feasibility of a common, vendor neutral dataflow language is feasible. A full
performance version expanding the prototype with-features for specifying more
complex applications can be well suited for adoption as an industry standard.

The second part of our effort was demonstrating porting applications
between Ptolemy and Autocoding Toolset® environments using DIF as a
common specification language. These experiments were described in section 3.
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A synthetic aperture radar benchmark, common to high performance embedded
computing, was implemented in PGM using the Autocoding Toolset®. PGM
specifications were translated to DIF. The DIF specifications were translated to
Ptolemy data structures and the application executed on a Ptolemy platform. DIF
specifications were generated from the Ptolemy implementation. The DIF
specification of the Ptolemy version was imported back into the Autocoding
Toolset® and translated to SPGN. The imported version was autocoded to an
executable realization. Comparison of the execution of the original benchmark,
the imported Ptolemy version, and the reimported Autocoding Toolset® version
identical results differing only by precision level errors. This round trip
experiment demonstrates the graph exchange that DIF is designed to support.

A second demonstration was conducted importing multi-rate filter Ptolemy
benchmark into the Autocoding Toolset® environment. DIF specifications were
generated from the Ptolemy benchmark. SPGN specifications for the Autocoding
Toolset® were translated from the DIF using the prototype DIF import tool.
Correct SPGN was generated. This experiment was not continued through
realization on an executable version because the effort required to develop
primitives in the Autocoding Toolset® corresponding to Ptolemy primitives would
have exceeded phase | scope. However, the ability to generate correct SPGN is
clear confirmation of the capability to import Ptolemy designs.

The imported SPGN nodes referenced Ptolemy primitives, highlighting a
challenge for realizing DIF as an industry standard. Domain Primitive support
can be developed for Ptolemy and visa versa. An actor interchange format tool
was developed to assist in primitive/actor mapping. However, a more general
approach to achieving common functional specifications within the common
dataflow behavior specified by DIF is considered essential to developing a widely
acceptable dataflow language standard. The VSIPL primitive library standard
can readily be adopted as the standard functional specification for a DIF Domain
Actor library. Nodes in the DIF specification can specify the VSIPL standards
functionality and with the standards calling structure. Functional performance
may be specified by the VSIPL reference library while individual vendors can
implement performance versions specific to their environments. This approach
to using VSIPL as a library standard for porting between dataflow environments
will add a new capability to VSIPL portability.

During the course of the feasibility study, a number of language features
which are desirable for compact specification for large and complex applications
were identified. DIF v0.2 was found to be Turing complete. These "engineering
convenience" features identified are unnecessary for determinism, but will .
significantly enhance the user friendliness of the language. Suggested new
capabilities were discusses in section 4. The MCCI/UMD team believes that DIF
can readily be expanded to include these features and indeed work to include
them is already in progress is many cases.
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Abstract

The Dataflow Interchange Format (DIF) is a standard language to specify mixed-grain dataflow
models for digital signal, image, and video processing (DSP) systems and other streaming-related
application domains. Major objectives of the DIF project are to design this standard language; to
provide an extensible repository for representing, experimenting, and developing dataflow models
and techniques; and to facilitate technology transfer of applications across DSP design tools. The
first version of DIF [8, 12] has demonstrated significant progress towards these goals. The subse-
quent phase of the DIF project, which we discuss in this report, is focusing on improving the DIF
language and the DIF package to represent more sophisticated dataflow semantics and exploring
the capability of DIF in transferring DSP applications and technology. This exploration has
resulted so far in an approach to automate exporting and importing processes and a novel solution
to porting DSP applications through DIF. This report introduces the DIF language version 0.2
along with the DIF package, the supported dataflow models, the approach to exporting and
importing, and the newly proposed porting mechanism.

1 Introduction

Modeling DSP applications through coarse-grain dataflow graphs is widespread in the DSP
design community, and a variety of dataflow models [1, 4, 5, 6, 13] have been developed for data-
flow-based design. Nowadays, a growing set of DSP design tools support such dataflow seman-
tics [3]. A critical issue arises in transferring technology across these design tools due to the lack
of a standard and vendor-independent language and an associated package with intermediate rep-
resentations and efficient implementations of dataflow analysis and optimization algorithms. DIF
is designed for this purpose and is proposed to be a standard language for specifying and working
with dataflow-based DSP applications across all relevant dataflow modeling approaches that are
relevant to DSP svstem design. . e o
The first version of DIF demonstrated partial success in achieving such goals. However, its
language syntax and accompanying intermediate representations are insufficient to handle more
complicated dataflow models as well as to transfer DSP applications through significant levels of
automation. Therefore, in the subsequent phase of our work on DIF, version 0.2 of the DIF lan-
guage was developed and the associated DIF package was also extended to address these chal-



lenges. With the enhanced DIF language and DIF package, advanced dataflow modeling
techniques such as parameterized synchronous dataflow [1] and boolean-controlled dataflow [6]
can be fully supported.

In order to provide the DSP design industry with a convenient front-end to use DIF and the
DIF package, automating the exporting and importing processes between DIF and design tools is
an essential feature. Although the problems in exporting and importing are design-tool-specific,
practical implementation issues are quite common among different design tools. These issues
have been carefully studied and we describe our approaches to addressing them in this report.

The problem of transferring DSP applications across design tools with a high degree of auto-
mation has also been investigated. Such porting typically requires tedious effort, is highly error-
prone, and is very fragile with respect to changes in the application model being ported (changes
to the model require further manual effort to propagate to the ported version). This motivates a
new approach to porting DSP applications across dataflow-based design tools through the inter-
change information captured by the DIF language, and through additional infrastructure and utili-
ties to aid in conversion of complete dataflow-based application models (including all dataflow-
and actor-specific details) to and from DIF.

Portability of DSP applications across design tools is equivalent to portability across all
underlying embedded processing platforms and DSP code libraries supported by those tools. Such
portability would clearly be a powerful capability if it can be attained through a high degree of
automation, and a correspondingly low level of manual or otherwise ad-hoc fine-tuning. The key
advantage of using a DIF specification as an intermediate state in achieving such efficient porting
of DSP applications is the comprehensive representation in the DIF language of functional
semantics and component/subsystem properties that are relevant to design and implementation of
DSP applications using dataflow graphs.

The organization of this report is as follows. In Section 2, we review the basic concepts of
dataflow graphs and introduce the structure of DIF. Then we describe DIF language version 0.2 in
Section 3. Next, we illustrate dataflow models in DIF through examples of DIF specifications in
Section 4. In Section 5, we introduce the DIF package and discuss the overall methodology of
design using DIF. In Section 6, we discuss critical problems in exporting and importing DIF spec-
ifications from DSP design tools and describe our approaches to these problems. In Section 7, we
develop the porting mechanism of DIF and discuss associated actor mapping issues. In Section 8,
we show the feasibility of the DIF porting capabilities by demonstrating the porting of a Synthetic
Aperture Radar application from the MCCI Autocoding Toolset [15, 16] to Ptolemy I [9, 10, 11].
In the final section, we list some major directions for future work.

2 Dataflow Graphs and Hierarchical Dataflow Representation

2.1 Dataflow Graph

In the dataflow modeling paradigm, computational behavior is depicted as a dataflow graph
(DFG). A dataflow graphG is an ordered pair (V,E), where V'is a set of vertices, and £ is a set of
directed edges. A directed edge e = (v/,v2) € E isan ordered pair of a source vertex src(e) and
a sink vertex snk(e), where src{e) € V, snk(e) e V, and e can be denoted as vI — v2. Given a
directed graph G = (¥, E) and a vertex v € V, the set of incoming edges of v is denoted as
in(v) = {e eE|snk(e)= v}, and similarly the set of outgoing edges of v is denoted as

out(v) = {e € E|src(e)= v}.



In dataflow graphs, a vertex v (also called a node) represents a computation and is often asso-
ciated with a node weight. The weight of an object in DIF terminology refers to arbitrary informa-
tion that a user wishes to associate with the object (e.g., the execution time of a node or the type of
data transferred along an edge). An edge e in dataflow graphs is a logical data path from its source
node to its sink node. It represents a FIFO (first-in-first-out) queue that buffers data values
(tokens) for its sink node. An edge has a non-negative integer delay delay(e) associated with it
and each delay unit is functionally equivalentto a z™' operator.

Dataflow graphs naturally capture the data-driven property in DSP computations. An actor
(node) can fire (execute) at any time when it is enabled (the actor has sufficient tokens on all its
incoming edges to perform a meaningful computation). When firing, it consumes certain numbers
of tokens from its incoming edges in(v), executes the computation, and produces certain num-
bers of tokens on its outgoing edges out(v). This combination of consumption, execution, and
production may or may not be carried out in an interleaved manner. Given an edge e = (v/,v2),
in a dataflow graph, if the the number of tokens produced on e by an invocation of v/ is constant
throughout execution of the graph, then this constant number of tokens produced is called the pro-
duction rate of e and is denoted by prd(e). The consumption rate of e is defined in an analo-
gous fashion, and this rate, when it exists, is denoted by cns(e).

2.2 Hierarchical Structure

In dataflow-based DSP systems, the granularity of actors can range from elementary operations
such as addition, multiplication, or logic operations to DSP subsystems such as filters or FFT
algorithm. If an actor represents an indivisible operation, it is called atomic. An actor that repre-
sents a hierarchically-nested subgraph is called a supernode; an actor that does not is called a
primitive node. The granularity of a dataflow actor describes its functional complexity. Simple
primitive actors such as actors for addition or for elementary logic operations are called fine-
grained actors. If the actor complexity is at the level of signal processing sub-tasks, the actor is
called coarse-grained. Practical dataflow models of applications typically contain both fine- and
coarse-grained actors; dataflow graphs underlying such models are called mixed-grain graphs.

In many sophisticated DSP applications, the mixed-grain dataflow graph of an overall system
consists of several supernodes, and each top-level supernode can be further refined into another
mixed-grain dataflow graph, possibly with additional (nested) supernodes.

One way to describe such complicated systems is to flatten the associated hierarchies into a
single non-hierarchical graph that contains no supernodes. However, such an approach may not
always be useful for the following reasons. First, analyzing a dataflow graph with the original
hierarchical information intact may be more efficient than trying to analyze an equivalent flat-
tened graph that is possibly much larger. Second, the top-down design methodology is highly
applicable to DSP system design, so the overall application is usually most naturally represented
as a hierarchical structure. Thus, incorporating hierarchy information into the DIF language and
graph representations is an essential consideration in the DIF project.

Definitions related to hierarchies are introduced as follows. A supernode s in a graph
G = (V, £) represents a dataflow,subgraph G’, and this association is denoted.as s = G’. The
collection of all supernodes in G forms a subset Sin V'suchthat se Sc ¥ and Vv e {V-S},v
is a primitive node. If a supernode s in G represents the nested graph G', then G' is a subgraph of
G and G is the supergraph of G'.



A hierarchy H = (G, I, M) contains a graph G with an interface , and a mapping M. Given
another hierarchy H' = (G',I', M"), if G’ is a subgraph of G, we said that H' is a sub-hierarchy
of H and H is a super-hierarchy of H'.

A mapping from a supernode s representing subgraph G’ to a sub-hierarchy H' containing
G' is denoted as s = H', where s= G' and H' = (G',I', M"). The mapping M in a hierarchy
H = (G,I, M) is a set containing all mappings (to subhierarchies) of supernodes s in
G = (V,E);thatis, Vse ScV,{s=>H'}eM.

The interface I in hierarchy H is a set consisting of all interface ports in H. An inferface port
(or simply called por?) p is a dataflow gateway through which data values (tokens) flow into a
graph or flow out of a graph. From the interior point of view, a port p can associate with one and
only one node v in graph G, and this association is denoted as p:v, where pel, veV,
G = (V,E) and H = (G, I, M). From the exterior point of view, a port p can either connect to
one and only one edge e” in graph G or connect to one and only one port p” in hierarchy H",
where G" is the supergraph of G and H" is a super-hierarchy of H. These connections are
denoted as p ~e” and p~p" respectively, where pel, e" e E", p"el", H = (G, M),
G" = (V", Ell)’ and H" = (G",I", M").

An interface port is directional; it can either be an input port or an output port. An input port is
an entry point for tokens flowing from outside the hierarchy to an inside node, and conversely, an
output port is an exit point for tokens moving from an inside node to somewhere outside the hier-
archy. Given H = (G, I, M), in(I) denotes the set of input ports of H and out(I) denotes the set
of output ports of H, where in(l) nout(l) = &, and in(I) v out(I) = I . Then given a port
p € in(I), p:v, and p ~ e", v consumes tokens from e” when firing. Similarly, given p € out(l),
p:v,and p ~ e”, v produces tokens to e” when firing.

The association of an interface port with an inside node and the connection of an outer edge to
an interface port can facilitate the clustering and flattening processes. For example, given p:v,
p~e", src(e")= v", snk(e")=s, s=>H = (G,I, M), and p eI, anew edge e can be con-
nected from v” to v directly after flattening the hierarchy H.

With the formal dataflow graph definition reviewed in Section 2.1 and the hierarchical struc-
tures defined in this section, we are able to precisely specify hierarchical dataflow graphs in the
DIF language, which is introduced in the following section.

3 The DIF Language

The Dataflow Interchange Format (DIF) is proposed to be a standard language for specifying
dataflow semantics in dataflow-based application models for DSP system design. This language
is suitable as an interchange format for different dataflow-based DSP design tools because it pro-
vides an integrated set of syntactic and semantic features that can fully capture essential modeling
information of DSP applications without over-specification.

From the dataflow point of view, DIF is designed to describe mixed-grain graph topologies
and hierarchies as well as to specify dataflow-related and actor-specific information. The data-
flow semantic specification is based on dataflow modeling theory and independent of any design
tool. Thercfore, the dataflow semantics of a-DSP application is unique:in DIF regardless of any
design tool used to originally enter the application specification. Moreover, DIF also provides
syntax to specify design-tool-specific information, and such tool-specific information is captured
within the data structures associated with the DIF intermediate representations. Although this



information may be irrelevant to many dataflow-based analyses, it is essential in exporting,
importing, and transferring across tools, as well as in code generation.

DIF is not aimed to directly describe detailed executable code. Such code should be placed in
actual implementations, or in libraries that can optionally be associated with DIF specifications.
Unlike other description languages or interchange formats, the DIF language is also designed to
be read and written by designers who wish to specify DSP applications in dataflow graphs or
understand applications based on dataflow models of computations. As a result, the language is
clear, intuitive, and easy to learn and use for those who have familiarity with dataflow semantics.

DSP applications specified by the DIF language are referred to as DIF specifications. The DIF
package includes a frond-end tool, the DIF language parser, which converts a DIF specification
into a corresponding graph-theoretic intermediate representation. This parser is implemented
using a Java-based compiler-compiler called SableCC [7]. The complete SableCC grammar of the
Dataflow Interchange Format is presented in Appendix A.

3.1 Dataflow Interchange Format Language Version 0.2

The first version of the DIF language [8], version 0.1, was the first attempt to approach aforemen-
tioned goals. In DIF version 0.1, we demonstrated the capability of conveniently specifying and
manipulating fundamental dataflow models such as SDF and CSDF. Nonetheless, its semantics is
insufficient to describe in detail more advanced dataflow semantics and to specify actor-specific
information. As a result, the DIF language has been further developed to the second version, ver-
sion 0.2, for supporting an additional set of important dataflow models of computation and facili-
tating design-tool-dependent transferring processes.

Note that any dataflow semantics can be specified using the “DIF” model of dataflow sup-
ported by DIF, and the corresponding DIFGraph intermediate representation, however, for per-
forming sophisticated analyses and optimizations for a particular dataflow model of computation
it is usually useful to have more detailed and customized features in DIF that support the model.
This is why the exploration of different dataflow models for incorporation into DIF is an ongoing
area for further development of the language and software infrastructure.

From version 0.1 to version 0.2, the syntax consistency and code reusability support of DIF
have been improved significantly. DIF language version 0.2 also supports more flexible parameter
assignment and provide more flexible treatment of graph attributes. Moreover, it supports most
commonly used value types in DSP applications and provides arbitrary naming spaces. Also, per-
haps most significantly, the actor block is newly created in DIF version 0.2 for specifying design-
tool-dependent actor information.

DIF version 0.2 consists of eight blocks: basedon, topology, interface, parameter, refinement,
built-in attribute, user-defined attribute, and actor. Those blocks specify different aspects of data-
flow semantics and modeling information. The following subsections introduce the syntax of the
DIF language.

3.2 The Main Block

A dataflow graph is specified in the main block consisting of two arguments, dataflowModel and
graphID!, followed by the main braces. The dataflowModel keyword specifies the dataflow




model of the graph. The graphID specifies the name (identifier) of the graph. The following is the
overall of the main block:

dataflowModel graphID {
basedon { ... }
topology { ... }
interface { ... }
parameter { ... }
refinement { ... }
builtInaAttr { ... } v
attribute usrDefAttrID { ... }
actor nodeID { ... }

The eight blocks are defined in the main braces. Each block starts with a block keyword and
the content is enclosed by braces. Statements inside block braces end with semicolons. Conven-
tionally, identifiers in DIF only consist of alphabetic, underscore, and digit characters. However,
DIF also supports arbitrarily-composed identifiers by enclosing them between two dollar-sign
characters. The basedon, topology, interface, parameter and refinement blocks should be defined
in this particular order. Except the topology block, however, all other blocks are optional. A top-
level graph specification does not have to define the interface block.

3.3 The Basedon Block

basedon { graphID; }

The basedon block provides a convenient way to refer to a pre-defined graph, which is speci-
fied by graphID. As long as the referenced graph compatible topology, interface, and refinement
blocks, designers can simply refer to it and override the name, parameters and attributes to instan-
tiate a new graph. In many DSP applications, duplicated subgraphs usually have the same topolo-
gies but different parameters or attributes. The basedon block is designed to support this
characteristic and promote conciseness and code reuse.

3.4 The Topology Block

topology {
nodes = nodelID, ..., nodeID;
edges = edgelD (sourceNodeID, sinkNodelID),

ey
edgeID (sourceNodeID, sinkNodeID);

The topology block specifies the topology of a dataflow graph G = (V, E). It consists of a
node definition statement defining every node v € V' --and an edge definition statement defining
every edge e = (vi,vj) € E.

The keyword nodes is the keyword for a node definition statement and node identifiers,
nodelDs, are listed following the keyword and equals sign. Similarly, edges is the keyword for an
edge definition statement and edge definitions are listed in a similar fashion. An edge definition,



edgelD (sourceNodelD, sinkNodelD), consists of three arguments in order to specify a directed
edge: the edge identifier edgelD, the source node identifier sourceNodeID, and the sink node
identifier sinkNodelD.

3.5 The Interface Block

interface {
inputs = portID : assocNodeID, ..., portID : assocNodelD;
outputs = portID : assocNodeID, ..., portID : assocNodelD;

The interface block defines the interface I of a hierarchy H = (G, I, M). An input definition
statement defines every input port p; € in(J) and the corresponding inside association p; . v;.
Similarly, an output definition statement defines every output port p, € in(I) and the correspond-
ing inside association p, . v, , where vi, v € ¥V and G = (V, E).

The keywords inputs and outputs are the keywords for input and output definition statements.
Following the inputs or outputs keyword, port definitions are listed. A port definition, port/D :
assocNodelD, consists of two arguments, a port identifier and its associated node identifier. DIF
permits defining an interface port without an associated node, so assocNodelD is optional.

3.6 The Parameter Block

parameter
paramID = value;
paramID : range;
paramID;

7

In many DSP applications, designers often parameterize important attributes such as the fre-
quency of a sine wave generator and the order of a FFT actor. In interval-rate, locally-static data-
flow [17], unknown production and consumption rates are specified by their minimum and
maximum values. In parameterized dataflow [1], production rate and consumption rates are even
allowed to be unspecified and dynamically parameterized. The parameter block is designed to -
support parameterizing values in ways like these, and to support value ranges, and value-unspeci-
fied attributes. ‘

In a parameter definition statement, a parameter identifier paramID is defined and its value is
optionally specified. DIF supports various value types and those types are introduced in Section
3.11.

DIF also supports specifying the range of possible values for a parameter. The range is speci-
fied as an interval such as (1, 2), (3.4, 5.6], [7, 8.9), [-3.1E+3, +0.2e-2], or a set of discrete num-
bers such as {-2, 0.1, +3.6E-9, -6.9¢+3}, or a combination of intervals and discrete sets such as (1,
2)+(3.4,5.6]+(7,89)+{-2,0.1, +3.6E-9, -6.9e+3}.

3.7 The refinement block

refinement
subgraphID = supernodelD;
subportID : edgelD;



subportID : portlID;
subParamID = paramlID;

L4

The refinement block is used to represent hierarchical graph structures. For each supernode
se ScVinagraph G = (V, E), there should be a corresponding refinement block in the DIF
specification to specify the supernode-subgraph association, s = H'. In addition, for every port
p' €I’ in sub-hierarchy H' = (G',I', M"), the connection p’ ~ e, or p’ ~ p is also specified in
this refinement block, where e € E, p € I, H = (G, I, M), and H is the super-hierarchy of H'.
Moreover, the unspecified parameters (parameters whose values are unspecified, e.g., because
they may be unknown in advance or computed at runtime) in subgraph G’ can also be specified
by parameters in G.

Each refinement block consists of three types of definitions. First, a subgraph-supernode
refinement definition, subgraphID = supernodelD, defines s=G'. Second, subgraph interface
connection definitions, subportID : edgelD or subportID : portID, describe p'~e or p'~p.
Third, a subgraph parameter specification, subParamID = paramID, specifies blank parameters
in the subgraph by using parameters defined in the current graph.

Figure 1 illustrates how to use DIF to specify hierarchical dataflow graphs. In Figure 1, there
are two dataflow graphs, GI and G2, and supernode »6 in graph G2 represents the subgraph GI.
The corresponding DIF specification is also presented in Figure 1.

dif graph G1 { dif graph G2 {
topology { topology {
nodes = nl, n2, n3; nodes = n4, n5, n6, n7;
edges = el (nl, n3), e2 (n2, n3); edges = e3 (n4, nb6),
} ed (n5, n6), e5 (n6, n7);
interface { }
inputs = pl : nl, p2 : n2; refinement ({
outputs = p3 : n3; Gl = n6;
} pl : e3; p2 : e4d; p3 : e5;

} }
e . - R }

Figure 1. Hierarchical graphs and the corresponding DIF specifications.




3.8 The Built-in Attribute Block

builtInAttrID {
elementID = value;
elementliID ID;
elementlID ipl1, ID2, ..., IDn;

1t

The keyword builtInAttrID points out which built-in attribute is specified. The element identi-
fier, elementID, can be a node identifier, an edge identifier, or a port identifier to which the built-
in attribute belongs. It can also be left blank; in this case, the built-in attribute belongs to the graph
itself. DIF supports assigning attributes by a variety of value types, an identifier, or a list of iden-
tifiers. The supported value types are introduced in Section 3.11.

Usually, the built-in attribute block is used to specify dataflow modeling information. Every
dataflow model in DIF can define its own built-in attributes and its own method to process those
built-in attributes. The DIF language parser treats built-in attributes in a special way such that the
method defined in the corresponding parser is invoked to handle them. Some dataflow models
require model-specific attributes and value types, and DIF specifications for those dataflow mod-
els will be discussed in Section 4.

In general, production, consumption, and delay are commonly-used built-in attributes of edges
in many dataflow models. For example, if delay(el) = 1D and delay(e2) = 2D, where D is a delay
unit, the delay attribute block is specified as: delay { el 1; e2 2; }.Note that the built-in
attributes production and consumption are not exclusive to edges. In hierarchical dataflow mod-
els, the interface-associated node has no edge on the corresponding direction. In such cases, spec-
ifying production rates or consumption rates as port attributes is permitted in DIF.

3.9 The User-Defined Attributes Block

attribute usrDefAttrID {

elementID = value;
elementID = ID;
elementID = ID1, ID2, ..., IDn;

The user-defined attributes block allows designers to define and specify their own attributes.
The syntax is the same as the built-in attributes block. The only difference is that this block starts
with the keyword attribute followed by the user-defined attribute identifier, usrDefAttrID.

3.10 The Actor Block

actor nodeID ¢{
computation = “stringDescription™;
attributeID : attributeType = value;
attributeID : attributeType = ID; -
attributeID : attributeType ipi, ID2, ..., IDn;

Il

The topology, interface, parameter, refinement and built-in attribute blocks are used to
describe graph topology, hierarchical structure, and dataflow semantics. They are sufficient for




applying dataflow-based analysis and optimization techniques. However, in order to preserve the
functionality of DSP applications in design tools, the information supported in DIF language ver-
sion 0.1 is not enough. As a result, the actor block has been created in DIF language version 0.2 to
specify tool-specific actor information.

The keyword actor is used for the actor block. The associated computation is a built-in actor
attribute for specifying in some way the actor’s computation (what the actor does). Other actor
information is specified as attributes. Explicitly, the identifiers of actor’s components such as
ports, arguments, or parameters are used as attributeID in the DIF actor block. Moreover, the type
of the component can be optionally specified as attributeType. DIF supports three built-in actor
attribute types: INPUT, OUTPUT, and PARAMETER to indicate the interface connections and
parameters of an actor. Attributes can be assigned a value, or an identifier for specifying its asso-
ciated element (edge, port, or parameter), or a list of identifiers for indicating multiple associated
elements of the attribute.

The actor block is primarily used in exporting and importing DIF as well as porting DSP
applications. Section 6 and Section 7 contain more explanations and examples of how to use the
DIF actor block.

3.11 The Value Types

DIF version 0.2 supports most commonly used value types in DSP operations: integer, double,
complex, integer matrix, double matrix, complex matrix, string, boolean, and array. Scientific
notation is supported in DIF in the double format. For example, a double value can have the fol-
lowing formats: 123.456, +0.1, -3.6, +1.2E-3, -4.56e+7. A complex value is enclosed by paren-
theses as (real part, imaginary part), and the real and imaginary parts are double values. For
example, a complex value 1.2E-3 - 4.56E+7 i is represented as (+1.2E-3, -4.56E+7) in DIF. Matri-
ces are enclosed by brackets, «,” is used to separate elements in a row, and “;” is used to separate
rows. For example, integer matrices, double matrices, and complex matrices are expressed as [1,
2;3,4], [+1.2, -3.4; -0.56e+7, 7.8E-3], and [(1.0, 2.0), (3.0, 4.0); (+1.2, -3.4), (-0.56e+7, 7.8E-3)].
A string value should be double quoted as “string®. A boolean value is either True or False.
Finally, an array of the aforementioned value types is expressed inside braces, and all elements
should be of the same type. For example, we can have an integer array as {1,2,3,4} or double
array as {+0.1, -3.6, +1.2E-3, -4.56e+7}. These value types in DIF should be sufficient in most
DSP applications. If a certain value type is not supported, it can be handled to some extent by rep-
resentation through the string type.

4 Dataflow Models

The DIF language is designed to specify all dataflow models for DSP and streaming related appli-
cations. In other words, its syntax and other features should be capable of describing dataflow
semantics in all dataflow models of computation relevant to this class of embedded applications.
DIF version 0.1 [8] has demonstrated its capability of describing CSDEF, SDF, single rate dataflow,

and HSDF. DIF version 0.2 improves the feature set to support more complicated dataflow =

semantics, for example, Turing-complete dataflow such as BDF [6] and meta-thodeling tech-
niques such as parameterized dataflow [1]. This section reviews those dataflow models and pro-
vides examples to illustrate how to specify them in DIF.
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4.1 Synchronous Dataflow

Synchronous dataflow (SDF) [4, 13] is the most popular form of dataflow modeling for DSP
design. SDF permits the number of tokens produced and consumed by an actor to be a non-nega-
tive integer, which makes it very suitable for modeling multi-rate DSP systems. However, SDF
also imposes a restriction that production and consumption rates must be fixed and known at com-
pile-time. Therefore, an edge e in an SDF graph has three non-negative constant-valued attributes,
prd(e), cns(e), and delay(e). The constant restriction on production and consumption rates benefits
SDF with the capability of static scheduling, optimization, and predictability but at the cost of
limited expressive power, in particular due to lack of support for data-dependent actor interface
behavior.

The dataflowModel keyword for SDF is sdf. The three edge attributes, prd(e), cns(e), and
delay(e), are specified in SDF built-in attribute blocks as production, consumption, and delay.
Figure 2 illustrates a simple SDF example in DIF.

sdf sdfDemol {
topology {
nodes = A,B,C,D,E;
edges = el(A,D), e2(D,E), e3(E,B),
ed(B,A), e5(B,C), e6(C,D);
}
production {
el=1; e2=2; e3=1; e4d=5; eb5=1;e6=1;
}
consumption {
el=10; e2=1; e3=1l; ed=1l; e5=2;e6=1;
}
delay {
e2 = 2;
}
}

Figure 2. An SDF example and the corresponding DIF specification.

4.2 Single-rate Dataflow and Homogeneous Synchronous Dataflow

In single-rate DSP systems, all actors execute at the same average rate. As a result, the number of
tokens produced on an edge when the source node fires is equal to the number of tokens con-
sumed on the same edge when the sink node fires. The dataflowModel keyword for single rate
dataflow is SingleRate. The single rate dataflow model is a special case of SDF, where the produc-
tion rate and consumption rate of each edge are identical. Because all nodes fire at the same aver-
age rate, DIF uses the built-in attribute fransfer to specify token transfer rates instead of
production and consumption attributes.

In homogeneous synchronous dataflow (HSDF), the production rate and consumption rate are
restricted to be unity on all edges. HSDF is the simplest widely-used form of dataflow and can be
viewed as a restricted case of single-rate dataflow and SDF. The dataflowModel keyword for
HSDF is Asdf. Because of the homogeneous unit transfer rate, specifying production and con-
sumption attributes is not necessary in HSDF.
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Single-rate and HSDF graphs are useful models in scenarios such as uniform execution rate
processing, precedence expansion for multi-rate SDF graphs, and multiprocessor scheduling.
Algorithms for converting between SDF, single-rate, and HSDF graphs are provided in DIF. Such
conversion is illustrated in Figure 3.

Single Rate

Figure 3. SDF, single rate, and HSDF conversion.

4.3 Cyclo-static Dataflow

In cyclo-static dataflow (CSDF) [5], the production rate and consumption rate are allowed to vary
as long as the variation forms a fixed and periodic pattern. Explicitly, each actor 4 in a CSDF
graph is associated with a fundamental period t(4) € ZT, which specifies the number of phases
in one minimal period of the cyclic production / consumption pattern of 4. Each time an actor is
fired in a period, a different phase is executed. For each incoming edge e of 4, cns(e) is specified
as a t(A)-tuple (Ce, 1, Ce,2, ..., Ce,1(4)), where each Ce,; is a non-negative integer that gives
the number of tokens consumed from e by A4 in the i-th phase of each period of 4. Similarly, for
each outgoing edge e of 4, prd(e) is specified as a t(4) -tuple (Pe, 1, Pe,2, ..., Pe,(4)), Where
each P, i is a non-negative integer that gives the number of tokens produced to e by 4 in the i-th
phase. CSDF offers more flexibility in representing interactions between actors and scheduling,
but its expressive power at the level of overall individual actor functionality is the same as SDF.
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csdf csdfDemol {
topology {
nodes = IN, UP3, FIR, DOWN2, OUT;
edges = el (IN,UP3), e2(UP3,FIR), e3(FIR,DOWN2), e4(DOWN2,6OUT);
}
production {
el=1; e2=(1,1,1]; e3=1; ed=[1,0];
}
consumption {
el=[1,0,0]; e2=1; e3=[1,1]; ed=1;
}
}

Figure 4. A CSDF example and the corresponding DIF specification.

The dataflowModel keyword for CSDF is csdf. Built-in attributes production and consump-
tion are specified as 1-by-t(4) integer matrices representing the t(4)-tuple patterns in one
period. Specifically, the DIF specification for a T(4) -tuple consumption period is specified as:
consumption{ edgelD = [Ce 1, Ce,2, ..., Ce,1(4)]; }. Figure 4 illustrates an up-sampling and
down-sampling example in CSDF.

4.4 Boolean-controlled dataflow

Boolean-controlled dataflow (BDF) [6] is a form of dynamic dataflow for supporting data-depen-
dent DSP computations while still permitting quasi-static scheduling to a certain degree. BDF is
Turing-complete [6]. Quasi-static scheduling refers to a form of scheduling in which a significant
proportion of scheduling decisions is made at compile-time through analysis of static properties in
the application model. By including BDF, DIF improves its ability to explore Turing-complete
semantics and incorporates detailed support for an important, fully expressive model.

In dynamic dataflow modeling, a dynamic actor produces or consumes certain numbers of
tokens depending on the incoming data values during each firing. In BDF, the number of tokens
produced or consumed by a dynamic actor is restricted to be a two-valued function of the value of
certain “control tokens.” In other words, the number of tokens that a boolean-controlled actor 4
produces to an edge e, or consumes from an edge e; during each firing is determined by TRUE
or FALSE values of the control token consumed by A at that iteration, where e, € out(4) or
e; € in(4) . BDF also imposes a restriction that a boolean controlled actor can only consume one
control token during each firing. The following two equations describe the boolean-controlled
production and consumption rates in BDF.
prod ratel, if control token consumed by A at i-th iteration is TRUE ‘

‘prd(e;) ati-th iteration =
prod rate2, if control token consumed by A at i-th iteration is FALSE

L . cons ratel, if control token consumed by A at i-th iteration is TRUE
cns(e;) at i-th iteration = ) o o
cons rate2, if control token consumed by A at i-th iteration is FALSE
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In addition to boolean-controlled dynamic actors, other actors are required to be regular. A
regular actor produces and consumes fixed and known numbers of tokens at compile-time; it is
similar to an SDF actor.

The dataflowModel keyword for BDF is bdf. Built-in attributes production and consumption
can be used to specify both fixed and boolean-controlled production and consumption rates. For a
fixed rate, the syntax is the same as SDF; for a boolean-controlled rate, a 1-by-2 integer matrix is
utilized to specify two boolean-controlled values. The first element is the rate when the control
token is TRUE, and the second element is the rate when the control token is FALSE. Specifically,
the following syntax shows the DIF specification for a boolean-controlled production rate.
production { edgeID = [trueValue, falseValue]; }

BDF introduces two boolean-controlled actors, SWITCH and SELECT. The SWITCH actor
consumes one token from its incoming edge and copies that token to either a “true” outgoing edge
or a “false” outgoing edge according to the value of a control token. The SELECT actor consumes
one token from a either “true” incoming edge or a “false” incoming edge according to the value of
a control token and copies that token to the outgoing edge. Figure 5 illustrates a BDF example
implementing an if-else statement.

4.5 Parameterized Synchronous Dataflow

Parameterized dataflow modeling differs from other fundamental dataflow modeling techniques
such as SDF, CSDF, in that it is a meta-modeling technique. Parameterized dataflow can be
applied to any underlying “base” dataflow model that has a well-defined notion of a graph itera-
tion. Applying parameterized dataflow in this way augments the base model with powerful capa-
bilities for dynamic reconfiguration and quasi-static scheduling through parameterized looped
schedules [1]. Combining parameterized dataflow with synchronous dataflow forms parameter-
ized synchronous dataflow (PSDF), a dynamic dataflow model that has been investigated in depth
and shown to have useful properties [1].

A PSDF actor 4 is characterized by a set of parameters, params(4), that can control the actor’s
functionality as well as the actor’s dataflow behavior such as production rates and consumption
rates. A configuration of a PSDF actor, config,, is determined by assigning values to the parame-
ters of A. Each parameter of an actor is either assigned a value or left unspecified. These statically
unspecified parameters are assigned values at run time, thus dynamically modifying the actor’s
functionality.

A PSDF graph G is an ordered pair (¥, E) and all statically unspecified actor parameters in G
propagate “upwards” as parameters of the PSDF graph G, which are denoted as params(G). A
DSP application is usually modeled in PSDF through a PSDF specification, which is also called a
PSDF subsystem. A PSDF subsystem @ consists of three PSDF graphs, the init graph @i, the
subinit graph ®;, and the body graph ®p. The body graph models the main functional behavior
of the subsystem, whereas the init and subinit graphs control the behavior of the body graph by
appropriately configuring parameters of the body graph. Moreover, PSDF employs a hierarchical
modeling structure by allowing a PSDF subsystem @ to be embedded in a “parent” PSDF graph
G and abstracted as a hierarchical PSDF actor H, where @ = subsystem(H) .

The init graph ®; does not take part in the dataflow and all the parameters of @; are left
unspecified. The subinit graph @ may only accept dataflow inputs at its interface input ports and
each parameter of @; is configured either by an interface output port of @, is set by an interface
input port of @, or is left unspecified. The interface output ports of ®; and ®; are reserved exclu-
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fire ACTOR2;

end

bdf bdfDemol {
topology {
nodes = SRC, SWITCH, SELECT, SINK, CONTROL, BROADCAST, ACTOR1l, ACTOR2;
edges = el (SRC,SWITCH), e2(SRC,CONTROL), e3 (CONTROL, BROADCAST) ,
ed (BROADCAST, SWITCH), e5(BROADCAST,SELECT), e6(SWITCH,ACTOR1),
e7 (SWITCH,ACTOR2), e8(ACTOR1l,SELECT), €9 (ACTOR2,SELECT),
el0 (SELECT, SINK) ; A
}
production ({
el=1l; e2=1; e3=1; ed=1; e5=1; e6=[1,0]; e7=[0,1]; e8=1; e9=1; el0=1;
}
consumption {
el=1l; e2=1; e3=1; ed=1; e5=1; e6=1; e7=1; e8=[1,0]; e9=[0,1]; e10=1;
}
actor SWITCH {
computation; = “dif.bdf.SWITCH";
control : CONTROL = e4;
input : INPUT = el;
true : TRUEOUTPUT = e6;
false : FALSEOUTPUT = e7;
}
actor SELECT ({
computation; = “dif.bdf.SELECT";
control : CONTROL = e5;
output : OUTPUT = el0;
true : TRUEINPUT = e8;
false : FALSEINPUT = e9;

Figure 5. A BDF example, the corresponding pseudocode, and DIF specification.

sively for configuring parameter values. The body graph @5 usually takes on the major role in
dataflow processing and all of its dynamic parameters are configured by the interface output ports
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of ®@; and ®;. All unspecified parameters of ®@; and @ propagate “upwards” as the subsystem
parameters of @, which are denoted as params(®) and are configured by the init and subinit
graphs of hierarchically higher level subsystems. This mechanism of parameter configuration is
referred as initflow. '

In order to maintain a valuable level of predictability and efficient quasi-static scheduling,
PSDF requires that the interface dataflow of a subsystem must remain unchanged throughout any
given iteration of its hierarchical parent subsystem. Therefore, parameters that determine the
interface dataflow can only be configured by output ports of the init graph ®@;, and ®; is only
invoked once at the beginning of each invocation of the supergraph. As a result, the parent has a
consistent view of module interfaces throughout any iteration. On the other hand, parameter
reconfiguration that does not change interface behavior of subsystem is permitted to occur across
iterations of the subsystem rather than the parent subsystem. The subinit graph ®; performs this
reconfiguration activity and is invoked each time before an invocation of the body graph ®s. This
gives a subsystem a consistent view of its components’ configurations throughout any given iter-
ation and provides configurability across iterations.

Specifying such complicated meta-modeling techniques in a fully general way (so that they
can operate with other models a maximally flexible way) in DIF is a challenging task. DIF sepa-
rates PSDF graphs and PSDF subsystems into two modeling blocks, and the corresponding data-
SflowModel keywords for them are psdf and psdfSubsystem, respectively. Parameterization is a
main feature of DIF with the parameter block and this feature is very suitable in specifying PSDF.
Configurable actor attributes and non-static dataflow modeling attributes such as production rates
and consumption rates are parameterized by pre-defined parameters. Unspecified parameters are
defined without providing their values in the parameter block. Upward parameters of a PSDF
subsystem can be specified in the refinement block of its supergraph. For hierarchical modeling
structures in PSDF, e.g.,., ® = subsystem(H), the DIF hierarchy concepts described in Section
2.2 can fully represent the associated functionality and the DIF refinement block is used to specify
them.

DIF interprets a PSDF subsystem as a special intermediate graph that consists of three sub-
graphs, ®;, ®s, and @s. In DIF specification, a PSDF subsystem cannot have the topology block
because the three subgraphs, init, subinit, and body (®;, @5, and ®p) are built-in and there is no
edge connection in any PSDF subsystem. The parameter reconfigurations across init, subinit, and
body graphs are specified in the built-in attribute block called paramConfig with the following
syntax.
paramConfig {

subinitGraphID.paramID = initGraphID.outputPortlID;

bodyGraphID.paramID = initGraphID.outputPortID;

bodyGraphID.paramID = subinitGraphID.outputPortID;

}
Figure 6 illustrates a PSDF example in [1] and the corresponding DIF specification.

4.6 Binary Cyclo-static Dataflow .. .

Binary CSDF (BCSDF) is a restricted form of CSDF such that the production and consumption
rates are constrained to be binary vectors. In other words, elements of the BCSDF production and
consumption vectors are either 0 or 1. BCSDF graphs arise naturally, for example, when convert-

16



specification example
; — E ToeT T graph exmnple body | .
rndints - !
5 1 decimate ---———-L print [
y {radint s IO | |
L T T e e e e j:&_“:: =

4
| graph decimate.subinit

’!‘I a 1 Prapagure g
i smdehqﬂphwe j }

- — -

°raph decimate. mrt

W’rw'

sets dnSnipl, facror

dnSmpl graph dec imare,boay"

Bl o Jactor
S S E—

| {factor phase}

:
1

] conﬁqdnqm,ﬂ = {(factor, L), (phase, L)}

psdf decimateSubinit {
topology { nodes = Propagate; }
interface {
inputs = a:Propagate;
outputs = d:Propagate;
}
consumption { a = 1; }
production { d = 1; }
}

psdf decimateInit ({ )
topology { nodes = rndInt2; }
interface { outputs = e:rndInt2; }
production { e = 1; }

}

psdf decimateBody {
topology { nodes = dnSmpl; }
interface {
inputs = b:dnSmpl;
outputs = c:dnSmpl;
}
parameter {
factor;
phase;
}
.consumption { b = factor; }
production { ¢ = 1; }

}

psdfSubsystem decimate {
interface {
inputs = A:subinit,
outputs = C:body;
}

B:body;

refinement { decimatelInit = init;

refinement {
decimateSubinit = subinit;
a : A;
}
refinement {
decimateBody = body;
b : B;
c : C;
}
paramConfig {
decimateBody. factor =
decimatelInit.e;
decimateBody.phase =
decimateSubinit.d;
}
}

psdf exampleBody {
topology {
nodes = rndInt5, rndIntl,
decimate, print;
edges = el(rndInt5, decimate),
e2 (rndintl, decimate),
e3 (decimate, print):
}
refinement {
decimate = decimate;
A : el; B: e2; C: e3;
}
production {
el = 5; e2 = 1;
}
consumption { e3 = 1; }

}

psdfSubsystem example {
refinement { decimate = body; }

Figure 6. A PSDF example and the corresponding DIF specification.
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ing certain process networks to dataflow and when modeling many dataflow-based hardware
implementations.

The DIF specification format for BCSDF is as the same as CSDF. In some BCSDF representa-
tions, the numbers of phases can be very large. Therefore, the BCSDF intermediate representation
utilizes an efficient data structure to store the production and consumption rates as bit vectors.

4.7 Interval-Rate Locally-static Dataflow

Interval-Rate Locally-static Dataflow (ILDF) [17] is proposed to analyze dataflow graphs whose
component data rates are not known precisely at compile time. In ILDF graphs, the production
and consumption rates remain constant throughout execution (locally-static), but only the mini-
mum and maximum values (interval-rate) of these constants are given. DIF is capable of repre-
senting ILDF graphs by parameterizing the ILDF production and consumption rates and
specifying the intervals of those parameters, which is described in Section 3.6. Figure 7 illustrates
an ILDF example and the corresponding DIF specification.

OR OGO

ildf ildfbDemol {
topology {
nodes A, B, C, D, E;
edges el(A,B), e2(B,C), e3(C,D), e4(D,E);
}
parameter {

cl : [3,71;
c2 : [3,7];
pl : [2,10];
p2 : [2,10];

}
production {
el = 1; e2 = pl; e3 = 8; ed = p2;
}
consumption ({
el =cl; e2 = 7; e3
}
}

c2; ed = 1;

Figure 7. An ILDF example and the corresponding DIF specification.

5 The DIF Package

The DIF package is a Java software package developed along with the DIF language. In general,
it consists of three major parts: the DIF. front-end, the DIF representation, and the implementa-
tions of dataflow-based analysis, scheduling, and optimization algorithms. This section introduces
the major parts of the DIF package and describes the relationship of the DIF package to theoreti-
cal dataflow models, dataflow-based DSP design tools, and underlying embedded processing
platforms.
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5.1 The DIF Representation

For each supported dataflow model, the DIF package provides an extensible set of data structures
(object-oriented Java classes) for representing and manipulating dataflow graphs in the model.
This graph-theoretic intermediate representation for the dataflow model is usually referred to as
the DIF representation.

The DIFGraph is the most general graph class in the DIF package. It represents the basic data-
flow graph structure among all dataflow models and provides methods that are common to all
models for manipulating graphs. For a more specialized dataflow model, development can pro-
ceed naturally by extending the general DIFGraph class (or some suitable subclass) and overrid-
ing and adding new methods to perform more specialized functions.

Figure 8 presents the class hierarchy of graph classes in the DIF package. The DIFGraph is
extended from the DirectedGraph class, and in turn, from the Graph class. The DirectedGraph and
Graph classes are used from the Ptolemy II [10] ptolemy.graph package, which is developed in
collaboration between members of the DIF and Ptolemy projects, and provides data structures and
methods for manipulating generic graphs. The dataflow models CSDF, SDF, single rate dataflow,
and HSDF are related in such a way such that each succeeding model among these four is a spe-
cial case of the preceding model. Accordingly, CSDFGraph, SDFGraph, SingleRateGraph, and
HSDFGraph form a class hierarchy in the DIF package such that each succeeding graph class
inherits from the more general one that precedes it (see Figure 8).

In addition to the aforementioned fundamental dataflow graph classes, the DIF package also
provides the Turing-complete BDFGraph, the meta-modeling PSDFGraph, and BCSDFGraph for
the newly introduced BCSDF model. Furthermore, a variety of other dataflow models are being
explored for inclusion in DIF.

ptolemy.graph l Graph I
v
r DirectedGraph H DirectedAcyclicGraph

mapss.dif l DlFéraph ]

| BDFGmJ'mGraph )
| SDFWGraph |
| SingleR:teGraph |
\ HSDFLGraph ]

Figure 8. The class hierarchy of graphs in the DIF package. .

5.2 The DIF Front-end

Although the DIF language is able to specify all dataflow models, in reality, the DIF representa-
tion is the actual format for realizing dataflow graphs and for performing analysis, scheduling,
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and optimization. Thus, automatic conversion between DIF specifications (.dif files) and DIF rep-
resentations (graph instances) is the most fundamental feature of the DIF package. The DIF front-
end tool automates this conversion and provides users an integrated set of programming interfaces
to construct DIF representations from specifications and to generate DIF specifications from
intermediate representations.

The DIF front-end consists of a Reader class, a set of language parsers (LanguageAnalysis
classes), a Writer class, and a set of graph writer classes. The language parsers are implemented
using a Java-based compiler compiler called SableCC [7]. The flexible structure and Java integra-
tion of the SableCC compiler enables easy extensibility for parsing different dataflow graph
types.

Figure 9 illustrates how the DIF front-end constructs the corresponding DIF representation
(graph class) according to the given DIF specification. The Reader class invokes the correspond-
ing language analysis class (DIF language parser) based on the model keyword specified in the
DIF specification. Then, the language analysis class constructs a graph instance according to the
dataflow semantics specified in the DIF specification.

On the other hand, Figure 10 illustrates how the DIF front-end generates a DIF specification
according to a DIF representation. The Writer class invokes the corresponding graph writer class
based on the type of the given graph instance. After that, the graph writer class generates the DIF
specification by tracing elements and attributes of the graph instance.

Language Analysis Classes DIF Intermediate
Representations

*[ LanguageAnalysis } ‘r{ DIFGraph

) ‘[ CSDFLanguageAnalysis ]I r‘{ CSDFGraph ]
4 SDFLanguageAnalysis | »| SDFGraph

\ﬁ SingleRateLanguageAnalysis I| >]I SingleRateGraph l

DIF Specification (dif file)

{ HSDFLanguageAnalysis | »| HSDFGraph

Figure 9. The DIF Front-end: from DIF specification to DIF representation.

In the DIF package, the language analysis classes (language parsers) are used for parsing most
parts of the DIF language, except for built-in attribute blocks. Similarly, the graph writer classes
are used for writing out most parts of the dataflow semantics, except for the methods handling the
built-in attributes. Therefore, all specialized dataflow language analysis classes are extended from
the LanguageAnalysis class that constructs the most general DIFGraph. Likewise, all specialized
graph writer classes are extended from the DIF Writer class, which writes out the dataflow seman-
tics of DIFGraph instances.
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Figure 10. The DIF front-end: from DIF representation to DIF specification.

5.3 Dataflow-based Analysis, Scheduling, and Optimization Algorithms

For supported dataflow models, the DIF package provides not only graph-theoretic intermediate
representations but also efficient implementations of various useful analysis, scheduling, and opti-
mization algorithms that operate on the representations. Algorithms currently available in the DIF
package are based primarily on well-developed algorithms such as iteration period computation,
consistency validation, buffer minimization, and loop scheduling. By building on the DIF repre-
sentations and existing algorithm implementations, and invoking the built-in algorithms as
needed, emerging techniques and other new algorithm implementations can conveniently be
developed and implemented in the DIF package.

The dataflow-based algorithms in the DIF package provide designers an efficient interface to
analyze and optimize DSP applications. It is also worthwhile to integrate DSP design tools with
the DIF package and then utilize the powerful scheduling and optimization features of the DIF
package.

5.4 Methodology of using DIF

Figure 11 illustrates the conceptual architecture of DIF and the relationships among abstract data-
flow models, dataflow-based DSP design tools, DIF specifications, and the DIF package. First of
all, the dataflow model block in this diagram presents the dataflow models currently supported in
DIF. Based on the DIF language introduced in Section 3, application models using these dataflow
models can be specified as DIF specifications, which are described in Section 4. :

The block for dataflow-based design tools represents currently available and other previously
developed DSP design tools. These tools usually provide a block-diagram-based graphical design

“  environment, a set of libraries consisting "of useful modules, and'a programming interface for

designing modules. As long as the DSP system modeling capability in a design tool is based on
dataflow principles, the DIF language is able to capture the associated dataflow semantics and
related modeling information of DSP applications in the tool and represent them in the form of
DIF specifications.
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The DIF package realizes the abstract dataflow structure of DSP application models through
the DIF representation. With the DIF front-end tool, the DIF representation can be constructed
automatically based on the given DIF specification. After that, dataflow-based analysis, schedul-
ing, and optimization techniques can be applied on the DIF representation.

Figure 12 illustrates the implementation and end-user viewpoints of the DIF architecture. DIF
supports as the core a layered design methodology covering dataflow models, the DIF language
and DIF specifications, the DIF package, dataflow-based DSP design tools, and the underlying
hardware and software platforms targeted by these tools.

The dataflow models layer represents the dataflow models currently integrated in the DIF
package. These models can be further categorized into static dataflow models such as SDF and
CSDF; dynamic dataflow models such as the Turing-complete BDF model; and meta-modeling
techniques such as parameterized dataflow, which provides the dynamic reconfiguration capabil-
ity of PSDF. Using the DIF language, application behaviors compatible with these dataflow mod-
eling techniques can be specified in a streamlined manner as specialized DIF specifications.

4 Dataflow Models \

! Cyclo-static Dataflow | [ Boolean-controlled Dataflow I

Dataflow-based DSP Design Tools

{ADS | I Compaan I l Ptolemy i

l Single Rate Dataflow | [ Interval-Rate Locally-static Dataflow | Lﬂl rGEDAE [ ' Streamit '

Homogeneous Dataflow | | Binary Cyclo-static Dataflow
& o

‘ Synchronous Dataflow J | Parameterized Dataflow [

DIF Specifications

DIF Package

DIF Front-end

l DIF Representations I

I Dataflow-based Analysis, Scheduling, and Optimization Algorithms ’

Figure 11. The relationships among dataflow models, design tools, the DIF language, DIF spec-
ifications, and the DIF package.

The iariméry dataflow-based DSP design tools that we have been experimenting with in our
development of DIF so far are the SDF domain of Ptolemy II, developed at UC Berkeley, and the
Autocoding Toolset developed by MCCI. However, DIF is in no way designed to be specific to
these tools; they are used only as a starting point for experimenting with DIF in conjunction with
sophisticated academic and industrial DSP design tools, respectively. Tools such as these form a
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layer in our proposed DIF-based design methodology. Ptolemy Il is a Java-based design environ-
ment and utilizes the Modeling Markup Language (MoML) as its textual format for specification
and interchange. Ptolemy II provides multiple models of computation and a large set of libraries
consisting of actors for various application domains. On the other hand, the MCCI Autocoding
Toolset is based on the Processing Graph Method (PGM) semantics and uses Signal Processing
Graph Notation (SPGN) as its specification format. It also provides an efficient library consisting
of domain primitives for DSP computations and is able to synthesize software implementations
for certain high-performance platforms.

The hardware / software embedded systems layer gives examples of current embedded pro-
cessing platforms supported by Ptolemy II and the Autocoding Toolset, and this layer generally
represents all embedded platforms that are supported by dataflow-based DSP design tools.
Ptolemy II can generate executable Java code running on the Java VM. On the other hand, the
Autocoding toolset is able to generate executable C code for Mercury DSPs and Ada for the Vir-
tual Design Machine (VDM) [16]. In addition, we are examining the requirements and implica-
tions of DIF-based support for other tools that have the ability to map dataflow models to efficient
hardware / software implementations

The DIF package acts as an intermediate layer between abstract dataflow models and different
practical implementations. It takes the responsibility of realizing dataflow graphs and performing
dataflow-based algorithms. DIF exporting and importing tools automate the process of exporting
DSP applications from design tools to DIF specifications and importing them back to design
tools. Automating the exporting and importing processes between DIF and design tools provides
the DSP design industry a useful front-end to use DIF and the DIF package. In the next section,
we will describe issues involved in such automation, and our approaches to addressing these
issues.

6 Exporting and Importing DIF

The DIF language is capable of specifying dataflow semantics of DSP applications in any data-
flow-based design tool. When integrating features of DIF with a DSP design tool, incorporating
capabilities to translate between the design tool’s specification format and DIF specifications or
DIF representations is usually an essential first step. In DIF terminology, exporting means trans-
lating a DSP application from a design tool’s specification format to DIF (either to the DIF lan-
guage or directly to the appropriate form of DIF representation). On the other hand, importing
means translating a DIF specification to a design tool’s specification format or converting a DIF
representation a to design tool’s internal representation format. Figure 13 illustrates the exporting
and importing mechanisms between DIF and design tools.

When exporting, parsing design tools’ specification formats and then directly formulating the
corresponding DIF specifications is usually not an efficient way. In contrast, DIF provides a com-
plete set of classes for representing dataflow graphs in a well-designed, object-oriented realiza-
tion. Hence, instead of parsing and directly formulating equivalent DIF language code, mapping
- -design tools’ graphical representations to DIF representations and then converting to DIF specifi-
cations using representation-to-specification translation capabilities already built in to DIF is typ-
ically much easier and more efficient.

However, depending on the particular design tool involved, it still may be a somewhat
involved task to automate the exporting and importing processes. First of all, graph topologies
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Figure 12. The role of DIF in DSP system design..

and hierarchical structures of DSP applications must be captured in order to completely represent
their dataflow semantics. Furthermore, actors’ computations, parameters, and connections must
also be specified for preserving application functionality completely. In the following subsections,
explain more about these issues and describe our approaches to addressing them. For illustration,
we also demonstrate DIF-Ptolemy exporting and importing capabilities that we have developed.
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Figure 13. Exporting and Importing Mechanism

6.1 Mapping Dataflow Graphs

Dataflow-based DSP design tools usually have their own representations for nodes, edges, hierar-
chies, etc. Moreover, they often use more specific components instead of just the abstract compo-
nents found in formal dataflow representations. Implementation issues involved in converting the
graphical representations of design tools to the formal dataflow representations used in DIF are
categorized as dataflow graph mapping issues.

Let’s take exporting Ptolemy II to DIF as an example to explain problems in dataflow graph
mapping. Ptolemy II has the AtomicActor class for representing DSP computations (associated
with primitive dataflow nodes) and the CompositeActor class for representing subgraphs. It uses
the Relation class instead of edges to connect actors. Each actor has multiple JOPorts and those
IOPorts are connection points for Relations. A Relation can have a single source but fork to mul-
tiple destinations. Regular JOPorts can accept only one Relation but Ptolemy 1I also allows multi-
port IOPorts that can accept multiple Relations. Clearly, problems arise when mapping Ptolemy
II graphical representations to DIF representations. First, based on the formal definition of nodes
in dataflow models, they do not have ports to distinguish interfaces. Second, edges in formal data-
flow graphs cannot support multiple destinations in contrast to Ptolemy II Relations. Third, the
multiport property in Ptolemy II does not match with formal dataflow semantics, and even an
interface port of a hierarchy defined in Section 2.2 can only connect to one outer edge or port.

Although implementation problems in dataflow graph mapping are tool-specific, exporting

without losing any essential modeling information is still feasible due to the broad range of mod-
eling capabilities offered through the features in DIF. First, the DIF language is capable of

describing dataflow semantics regardless of the particular design tool used to enter an application - -

model as long as the tool is dataflow-based. Second, DIF representations can fully realize the
dataflow graphs specified by the DIF language. Based on these two properties, our general
approach comprehensively traverse graphical representations in a design tool and then map the
modeling components encountered to equivalent components or groups of components available
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for DIF representations. After that, our DIF front-end tool can write the DIF representations into
textual DIF specifications.

A brief description follows of the algorithm developed for mapping Ptolemy’s graphical rep-
resentations to DIF representations. First, AtomicActors are represented by nodes and Composite-
Actors are represented by hierarchies. Single-source-single-destination Relations are represented
by edges. For a multiple-destination Relation, a fork actor (which is described in Section 6.3) and
several edges are used to represent it without losing any dataflow properties. A Ptolemy II actor’s
IOPorts and the corresponding connections are specified as actor attributes. Even for a multiport
IOPort, multiple connections can still be listed as an actor attribute.

6.2 Specifying Actors

In dataflow analysis [14], a node may be viewed as a functional unit associated with a weight that
consumes/produces certain numbers of tokens when executing. Usually, dataflow-based analysis
and scheduling techniques are based on production rates, consumption rates, edge delays, and var-
ious node weight information and other edge weight information (e.g., node execution times or
execution time distributions, and the interprocessor communication cost associated with an edge
if its source and sink are mapped to different processors in a multiprocessor target). Thus, the
detailed computation performed by a node is irrelevant to many dataflow-based analyses. How-
ever, the computation (such as an FFT operation) and attributes (such as the order of the FFT)
associated with a node is essential during implementation. To avoid confusion between the view-
points of nodes in dataflow analyses versus in hardware/software implementations, we henceforth
use the term node for the former context, and we use the term actor to refer to a node with speci-
fied computation and other implementation-related attributes (for the latter context).

Specifying an actor’s computation as well as all necessary operational information is referred
to as actor specification. It is an important issue in exporting and importing between DIF and
design tools as well as in porting DSP applications across tools because every actor’s functional-
ity must be preserved. The actor block is newly added to DIF language version 0.2 for actor spec-
ification. The DIF language syntax for the actor block is described in Section 3.10. Note that for
most dataflow-based analysis and scheduling techniques, the DIF language syntax without the
actor block is sufficient.

To illustrate actor specification, we take the FFT operations in Ptolemy II and in the Autocod-
ing Toolset as examples. In Ptolemy II, actors are implemented in Java and invoked through their
classpath. The FFT actor definition in Ptolemy II is thus referred to as

‘ ‘ptolemy.domains.sdf.1ib. FFT.

In the Autocoding Toolset, actors are called domain primitives, and each domain primitive is
referred to by its library identifier. The FFT domain primitive in the Autocoding Toolset is
referred to as D_FFT.

In exporting Ptolemy II to DIF, an actor’s parameters and IOPort-Relation connections are
specified as actor attributes. The built-in attributes PARAMETER, INPUT, and OUTPUT in DIF
indicate the parameters and interface connections of an actor. A full DIF actor block for a Ptolemy
FFT-actor is presented below: : : e
actor nodelID ({ “

computation = “ptolemy.domains.sdf.lib.FFT;

order : PARAMETER = integerValue or integerParameterID;

input : INPUT = incomingEdgelID;

output : OUTPUT = outgoingEdgelD;
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}
A Ptolemy FFT actor has a parameter order and two IOPorts, input and output. Therefore, in the
corresponding DIF actor specification, attribute order (with attribute type PARAMETER) speci-
fies the FFT order. In addition, attributes input (with attribute type INPUT) and output (with
attribute type OUTPUT) specify the incomingEdgelD and outgoingEdgeID connecting to the cor-
responding IOPorts.

In the Autocoding Toolset, input/output connections and function configuration parameters of
a domain primitive are all viewed as parameters. In the D_FFT domain primitive, parameter X
specifies its input, parameter Y specifies its output, and parameter N specifies its length. In this
case, the components of actor-specific information are all of the same tool-specific class (parame-
ter), so the attributeType field in the DIF specification can simply be ignored. There is no loss of
of information in leaving them out. The corresponding DIF specification for the D_FFT domain
primitive is presented below.
actor nodeID {

computation = “D FFT”;

N = integerValue_—or integerParameterID;

X = incomingEdgelD;

Y outgoingEdgelID;

}
6.3 The Fork Actor

The fork actor is introduced in DIF as a special built-in actor. It can have one and only one incom-
ing edge and multiple outgoing edges. Conceptually, when firing, the fork actor consumes a token
from its incoming edge and duplicates the same token on each of its outgoing edges. We say “con-
ceptually” here because in an actual implementation of the fork actor, it may be desirable to
achieve the same effect through careful arrangement and manipulation of the relevant buffers. The
fork actor is widely used in dataflow. For example, if a stream of data tokens is required to be
“broadcast” to multiple destinations, the fork actor can be used for this purpose. The built-in DIF
computation associated with the fork actor is called dif.fork.

In dataflow theory, an edge is a data path from a source node to a sink node. It cannot be asso-
ciated with multiple sink nodes. But the Relation in Ptolemy II can have multiple destinations. In
order to export Ptolemy’s graphical representations to DIF representations, the graph mapping
algorithm must be able to take care of this structural difference. By using a fork actor, an edge
connecting to the input of the fork actor, and multiple edges connecting from the fork actor to all
sink nodes, we can represent the Ptolemy Relation and preserve the same dataflow semantics
while using the formal dataflow representations in DIF.

Figure 14 illustrates how the fork actor and actor specification solve the Ptolemy Relation and
Ptolemy multiport problems.

6.4 Exporting and Importing Tools

In order to provide a front-end for a dataflow-based design tool to cooperate with DIF and to
use the DIF package, automating the exporting and importing processes for the desxgn tool is the
most important feature. Figure 13 illustrates our proposed exporting and importing mechanism.
First, a dataflow graph mapping algorithm must be properly designed for the specific design tool
that is being used. Then a DIF exporter is implemented for that design tool based on the graph
mapping algorithm. It must be able to convert the graphical representation format in that tool to a
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corresponding DIF representation. Actor specification is also required to preserve the full func-
tionality of actors. By applying the DIF front-end, the DIF exporter can translate the DIF repre-
sentation to a corresponding DIF specification and complete the exporting process.

Similarly, by using the DIF front-end, the DIF importer can read the DIF specification and
generate the DIF representation. Then, based on a “reverse graph mapping algorithm” and actor
specification, the DIF importer is able to construct the graphical representation in the design tool
while preserving the same functionality of the original DSP application.

The DIF exporter and DIF importer for Ptolemy II are implemented according to the export-
ing and importing mechanism described above. With these software components, a DSP applica-
tion in Ptolemy II can be exported to a DIF specification and then be imported back to a Ptolemy
MoML specification with all functionality preserved. Such an equivalent result from round-trip
translation validates the correctness of the implemented strategies and general methods in DIF for
dataflow graph mapping and actor specification.

Ptolemy II
actort
AddSubtract  Sink
$0! +
S - 1_ [
P > -
relationl actor2

e2 'l ed
e3 @ e5
dif graphl {
topology {
nodes = source, fork, actorl, actor2, add, sink;
edges = el (source, fork), e2 (fork, actorl), e3 (fork, actor2),
ed (actorl, add), e5 (actor2, add), e6 (add, sink);
}

actor fork {computation = "dif.fork";}
actor add {
computation = "dif.actor.lib.AddSubtract";

plus : INPUT = e4d, e5;
output : OUTPUT = eb6;
}
}

Figure 14. Mapping the Ptolemy II graphical representation to a DIF representation and the
corresponding DIF specification.

7 Porting DSP Applications
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DIF is proposed to be a standard language for specifying dataflow graphs in all well-defined data-
flow models. One of the original goals was to transfer information associated with DSP applica-
tions across different dataflow-based design tools. This goal was demonstrated in the first version
of DIF [8, 12].

In the development of DIF version 0.2, we have further explored this direction and developed
a new and significantly improved approach for porting dataflow-based DSP applications across
design tools. The objective of this porting mechanism is to provide, with a high degree of automa-
tion, a solution such that an application constructed in one design tool can be ported to another
design tool with enough details preserved throughout the translation to ensure executability on the
associated set of target embedded processing platforms. Because different design tools support
different sets of underlying embedded processing platforms, porting DSP applications across
design tools is effectively equivalent to porting them across those underlying platforms. Thus, the
proposed DIF porting mechanism not only facilitates technology transfer at the level of applica-
tion models, but also provides portability across target platforms.

In this section, we introduce the porting mechanism in detail. In the next section, we demon-
strate that this mechanism is a feasible solution through an example of a synthetic aperture radar
(SAR) benchmark application that is transferred between the MCCI Autocoding Toolset and
Ptolemy II. These tools are significantly different in nature and the ability to automatically port an
important application like SAR across them is a useful demonstration of the DIF porting mecha-
nism.
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7.1 The DIF Porting Mechanism

Figure 15 illustrates our proposed porting mechanism. It consists of three major steps: exporting,
actor mapping, and importing. Let us take porting from the Autocoding Toolset to Ptolemy II as
an example and introduce the porting mechanism in detail.

The first step is to export a DSP application developed in the Autocoding Toolset to the corre-
sponding DIF specification. In this stage, the actor information (actor specifications in the DIF
actor block) is specified for the Autocoding Toolset. With the DIF-Autocoding Toolset exporter/
importer, this exporting process can be done automatically. The second step invokes the actor
mapping mechanism to map DSP computational modules from Autocoding Toolset domain prim-
itives to Ptolemy II actors. In other words, the actor mapping mechanism interchanges the tool-
dependent actor information in the DIF specification. The final step is to import the DIF specifica-
tion with actor information specified for Ptolemy II to the corresponding Ptolemy II graphical
representation and then from the graphical representation to an equivalent Ptolemy II MoML
specification. This importing process is handled by DIF-Ptolemy exporter/importer automatically.

The key advantage of using a DIF specification as an intermediate state in achieving such effi-
cient porting of DSP applications is the comprehensive representation in the DIF language of
functional semantics and component/subsystem properties that are relevant to design and imple-
mentation of DSP applications using dataflow graphs. Except for the actor block, a DIF specifica-
tion for a DSP application represents the same semantic information regardless of which design
tool is importing it. Such unique semantic information is an important basis for our porting mech-
anism, and porting DSP applications can be achieved by properly mapping the tool-dependent
actor information while transferring the dataflow semantics unaltered. Actor mapping thus plays a
critical role in the porting process, and the following sub-sections describe the actor mapping pro-
cess in more detail.

7.2 Actor Mapping

The objective of actor mapping is to map an actor in a design tool to an actor or to a set of actors
in another design tool while preserving the same functionality. Because different design tools usu-
ally provide different sets of actor libraries, problems may arise due to actor absence, actor mis-
match, and actor attribute mismatch.

If a design tool does not provide the corresponding actor in 1ts library, we encounter the actor
absence problem. For example, Ptolemy does not provide a matrix transpose computation but the
Autocoding Toolset does. If corresponding actors exist in both libraries but functionalities of
those actors do not completely match, we have an instance of the actor mismatch problem. For
example, the FFT domain primitive in the Autocoding Toolset allows designers to select the range
of the output sequence, but the FFT actor in Ptolemy does not provide this function. 4ctor
attribute mismatch arises when attributes are mapped between actors but the values of corre-
sponding attributes cannot be directly interchanged. For example, the parameter order of the
Ptolemy FFT actor specifies the FFT order, but the corresponding parameter NV of the Autocoding
Toolset FFT domain primitive specifies the length of FFT. As a result, in order to correctly map
between order and N, the equation N = 27order must be satisfied. e '

The actor interchange format can significantly ease the burden of actor mismatch problems by
allowing a designer a convenient means for making a one-time specification of how multiple
modeling components in the target design tool can construct a sub-graph such that the subgraph
functionality is compatible with the source actor. In addition to providing automation in the port-
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ing process, such conversions reduce the need for users to introduce new actor definitions in the
target model, thereby reducing user effort and code bloat. Similarly, actor interchange methods
can solve attribute mismatch problems by evaluating a target attribute in a consistent, centrally-
specified manner, based on any subset of source attribute values. For absent actors, most design
tools provide ways to create actors through some sort of actor definition language. Once users
determine equivalent counterparts for absent and mismatched actors, our actor mappmg mecha-
nism can take over the job cleanly and efficiently.
Figure 15 illustrates our actor mapping approach to the porting mechanism.

7.3 The Actor Interchange Format

Actor information associated with a DSP application is described in the DIF actor block by speci-
fying a built-in computation attribute and other actor attributes associated with the built-in
attribute types PARAMETER, INPUT, and OUTPUT. Specifying actor information in the DIF
actor block is referred to as actor specification. In order to map actor information a from source
design tool to a target design tool, the actor mapping mechanism must be able to modify actor
attributes and their values in DIF specifications. How to carry out this mapping process is gener-
ally based on the provided (input) actor interchange information.

The Actor Interchange Format (AIF) is a specification format dedicated to specifying actor
interchange information. The AIF syntax consists of the actor-to-actor mapping block and the
actor-to-subgraph mapping block. The actor-to-actor mapping block specifies the mapping infor-
mation of computations and actor attributes from a source actor (an actor in the source design
tool) to a target actor (an actor in the target design tool). On the other hand, the actor-to-subgraph
mapping block specifies the mapping from a source actor to a subgraph consisting of a set of
actors in the target design tool and depicts the topology and interface of this subgraph. The actor-
to-subgraph mapping block is designed for use when a matching standalone actor in the target tool
is unavailable, inefficient or otherwise undesirable to use in the context at hand. The following
subsections 7.3.1 and 7.3.2 introduce the AIF syntax and the SableCC grammar for the Actor
Interchange Format is presented in Appendix B.

7.3.1 The Actor-to-Actor Mapping Block

actor trgActor <- srcActor | methodID(argl, ..., argN) {
trgAtID : type = value;
trgAtID : type <- srcAtID : type | methodID(argl, ..., argN);
trgAtIDl : type, ..., trgAtIDn : type <- srcAtlID : type;
trgAtID : type <- srcAtIDl : type, ..., SrcAtIDn : type;

}

In the first line, the keyword actor indicates the actor-to-actor mapping. The srcActor and trgdc-
tor specifiers designate the computations (built-in computation attribute) of the source actor and
target actor, respectively. A method methodID is given optionally to specify a prior condition for
this mapping (i.c., a condition that must be satisfied in order to trigger the mapping). Arguments
argl through araN can be assigned values or expressions of source actor attributes. At runtime,
this method can determine whether or not the mapping should be performed based on the values
of source attributes.

The AIF provides four ways to specify or map to the target attribute values, each of which cor-
responds to a statement in the above syntax. First, it allows users to directly assign a value value
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for a target attribute trgAtID. The supported value types are introduced in section 3.11. Second, a
target attribute trg4¢ID can be mapped from the corresponding source attribute srcAtID. If meth-
odID is not given in this statement, the value of 1rg4tD is directly assigned by the value of
sreAtID. On the other hand, a method methodID can optionally be given to evaluate or condition-
ally assign the value of trg4¢ID based on the runtime values of source actor attributes. Finally, the
AIF also provides syntax for one-to-multiple attribute mapping and multiple-to-one attribute
mapping. For such purposes, a list of identifiers can be used as an attribute value. Note that every
actor attribute can have associated with it an optionally specified fype. For related details, see the
DIF attribute blocks and DIF actor block in Section 3.8 and Section 3.10.

7.3.2 Actor to Subgraph Mapping Block

graph trgGraph <- srcActor | methodID(argl, ..., argN) ({
topology {
nodes = nodelID, ..., nodelD;
edges = edgelD (sourceNodeID, sinkNodelD),

ey
edgelID (sourceNodeID, sinkNodelID);
}
interface {
inputs = portID : nodelID <- srcAtID : INPUT,
vy
portID : nodeID <- srcAtID : INPUT;
outputs = portID : nodeID <- srcAtID : OUTPUT,

ceey
portID : nodeID <- srcAtID : OUTPUT;
}
actor nodeID ({
trgAtID : type = value;
trgAtID : type = ID;

trgAtID : type = ID1l, .., IDn;
trgAtID : type <- srcAtID : type | methodID(argl, ..., argN) ];
trgAtID : type <- srcAtIDl : type, ..., SrcAtIDn : type;

}

The keyword graph in this context indicates the actor-to-subgraph mapping. The #rgGraph term
specifies the identifier or computation in order to invoke a component representing a subgraph in
the target design tool and srcActor specifies the computation of the source actor. As with the
actor-to-actor mapping block, a method methodID and its arguments can be optionally given to
determine whether a triggering condition is satisfied. ‘

The fopology block is used to portray the topology of trgGraph and the interface block defines
the interface ports of trgGraph. The AIF syntax for the topology and interface blocks is the same
as that for the corresponding blocks in the DIF-language. Moreover, the AIF allows users to spec-
ify mappings from the interface attributes, srcAtID with built-in type INPUT or OUTPUT, of the
source actor to the interface ports of the trgGraph.

The actor information of every node in trgGraph is specified in each actor block. The syntax
of the AIF actor block is almost the same as the DIF actor block. In addition, the AIF provides
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syntax to map the source actor attribute sredtID to the target attribute 7gA#ID while optionally
taking a method for evaluating or conditionally assigning the attribute value. Moreover, multiple-
to-one attribute mapping is also supported.

7.4 Actor Interchange Methods

The methods optionally specified in the actor-to-actor mapping block and actor-to-subgraph map-
ping block are used to perform conditional checks or to evaluate attribute values. They are
referred to as actor interchange methods. A set of commonly-used actor interchange methods are
defined in a built-in Java class in the DIF package. Users can extend this class and design more
specific interchange methods for more complicated or specialized actor mapping scenarios. Every
method used in an AIF specification must be defined in this built-in class or in one of the classes
derived from it. Based on the explicit classpath and the method’s signature, the correct method is
invoked through the Java reflection package.

There are three built-in actor interchange methods in the DIF package: 1. ifExpres-
sion(“expression”): this method evaluates the boolean expression and returns true or false; 2.
assign( “expression”): this method evaluates the input expression and returns the evaluated value;
3. conditionaldssign(“valueExpression”, “conditionalExpression”): this method returns the
value of valueExpression if the conditionalExpression is true, and throws an exception otherwise.
Note that the attributes of the source actor can be used as variables in expressions and their values
are used at runtime during evaluation. How to evaluate expressions is also an important issue in
actor mapping. Ptolemy II provides an efficient Java package, ptolemy.data.expr, for representing
variables as well as parsing and evaluating expressions; we have employed this package in the
implementation of AIF.

7.5 An Actor Interchange Specification Example: FFT

Although the Autocoding Toolset and Ptolemy II both provide FFT operations, actor mismatch
and attribute mismatch problems still exist between the two versions. The Autocoding Toolset
FFT domain primitive has parameter X for data input, parameter Y for data output, parameter N
for FFT length, and parameter FI for indicating an FFT or IFFT operation. On the other hand, the
Ptolemy FFT actor has parameter order, input IOPort input and output IOPort output. Clearly, an
actor mismatch problem arises because the FFT domain primitive provides both FFT and IFFT
operations but the Ptolemy FFT actor does not. In this case, the Autocoding Toolset FFT domain
primitive can be mapped to the Ptolemy FFT actor only when its parameter F7 is not set to indi-
cate IFFT. Moreover, an attribute mismatch problem arises because the FFT domain primitive
uses the FFT length but the Ptolemy FFT actor uses the FFT order. Therefore, parameter the N can
be mapped to the parameter order only when N = 2”order is satisfied, where N and order are inte-
gers. The actor interchange specification for mapping the FFT operation from the Autocoding
Toolset to Ptolemy II is presented in Figure 16.

The library identifier of the Autocoding Toolset FFT domain primitive is D_FFT. The class~
path of the Ptolemy FFT-actor is”ptolemy.donrains.sdf.lib.FFT. D_FFT can be mapped-to
ptolemy.domains.sdf.lib.FFT if the actor interchange method ifExpression evaluates FI == () and
returns true. The parameter order of the Ptolemy FFT actor is assigned to log(N) / log(2) if log(N)
/ log(2) is an integer. Therefore, the actor interchange method conditionalAssign evaluates and
returns log(N) / log(2) if (log(N)/log(2)) - rint(log(n)/log(2)) == 0 is true, where rint() is a round
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actor ptolemy.domains.sdf.lib.FFT <~ D_FFT | ifExpression("FI == 0") {
order : PARAMETER <- N | conditionalAssign(
"log(N)/log(2)", " {log(N)/log(2)) - rint(log(N)/log(2)) == 0");
input : INPUT <- X;
output : OUTPUT <- Y;
}

Figure 16. The actor interchange specification of mapping the FFT operation.

to nearest integer function. Note that if (Tog(N)/log(2)) - rint(log(n)/log(2)) == 0 is false, condi-
tionaldssign will throw an exception indicating that the attribute mapping fails. Next, the value of
parameter X is directly assigned to IOPort input for specifying the incoming edge. Similarly, the
value of parameter Y is directly assigned to IOPort output.

The Autocoding Toolset FFT domain primitive also has a parameter B, which specifies the
first point of its output sequence and a parameter M, which specifies the number of output points.
The ability to select the range of the output sequence causes another actor mismatch problem
because the Ptolemy FFT actor does not support this function. Furthermore, there is a factor of N
difference between the Autocoding Toolset FFT domain primitive performing the IFFT operation
and the Ptolemy IFFT actor. One way to solve this problem is to create a new FFT actor in
Ptolemy, but it is rather time-consuming. The AIF actor-to-subgraph mapping block can be used
instead to solve such actor mismatch problems by combining multiple actors in the target design
tool in strategic ways to construct a subgraph such that the functionality of the subgraph is com-
patible to the source actor.

The actor interchange specification in Figure 17 illustrates how to map a D_FFT domain
primitive with the IFFT operation and selective output length to a Ptolemy subgraph. Ifa D_FFT
domain primitive outputs only part of its sequence, i.e., parameter N is not equal to parameter M,
other Ptolemy actors are involved to extract part of the output sequence of the FFT or IFFT actors.
As a result, when FI == I && M I= N is true, a D_FFT domain primitive should be mapped to a
Ptolemy subgraph capable of performing an IFFT operation and post-processing the output
sequence. A subgraph in Ptolemy is represented by a supernode and is instantiated through the
class ptolemy.actor. TypedCompositeActor.

The mapped subgraph consists of an IFFT actor, a Scale actor, a SequenceToArray actor, an
ArrayExtract actor, and an ArrayToSequence actor connected in this order. The IFFT actor per-
forms an IFFT operation, the Scale actor adjusts each sample by a factor of N, and the other three
actors are used to extract a certain part of the output sequence. The subgraph has an input port in
mapped from parameter X of D_FFT and an output port out mapped from parameter ¥ of D_FFT.

The classpaths of IFFT, SequenceToArray, ArrayExtract, and ArrayToSequence are specified
in the computation attributes. Moreover, the parameter order of IFFT is mapped from D_FFT
parameter N and its value is assigned log(N) / log(2), if log(N) / log(2) is an integer. The parame-
ter factor of Scale is mapped from N. Then, SequenceToArray converts arrayLength samples to -
an array and its parameter arrayLength is mapped from N. Next, ArrayExtract extracts
extractLength elements starting from sourcePosition in the input array and puts them into an out-

put array with length outpurdirayLength statting from destinationPosition. Its parameter sour- - .

cePosition is mapped from D_FFT parameter B. Another attribute mismatch problem arises
because the array starting index in Ptolemy II is 0 but it is 1 in the Autocoding Toolset. The actor
interchange method assign solves the problem by returning (B - 1) . Finally, ArrayToSequence
converts an array to arrayLength samples and arrayLength is mapped from D_FFT parameter M.
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graph ptolemy.actor.TypedCompositeActor <- D_FFT
| ifExpression("FI == 1 && M != N") {
topology {
nodes = IFFT, Scale, SequenceToArray, ArrayExtract, ArrayToSequence;
edges = el (IFFT, Scale), e2 (Scale, SequenceToArray),
e3 (SequenceToArray, ArrayExtract),
ed4 (ArrayExtract, ArrayToSequence);
}
interface {
inputs = in : IFFT <- X;
outputs = out : ArrayToSequence <- Y;

}

actor IFFT {
computation = "ptolemy.domains.sdf.lib.IFFT";
order : PARAMETER <- N | conditionalAssign(

"log (N) /log(2)", "(log(N)/log(2))-rint(log(N)/log(2)) == 0");
input : INPUT = in;
output : OUTPUT = el;
}
actor Scale {
computation = "ptolemy.actor.lib.Scale";
input : INPUT = el;
output : OUTPUT = e2;
factor : PARAMETER <- N;
}
actor SequenceToArray {
computation = "ptolemy.domains.sdf.lib.SequenceToArray";
input : INPUT = e2;
output : OUTPUT = e3;
arrayLength : PARAMETER <- N;
}
actor ArrayExtract {
computation = "ptolemy.actor.lib.ArrayExtract";
input : INPUT = e3;
output : OUTPUT = e4;
sourcePosition : PARAMETER <- B | assign("B-1");
extractLength : PARAMETER <- M;
destinationPosition : PARAMETER = 0;
outputArrayLength : PARAMETER <- M;
}
actor ArrayToSequence {
computation = "ptolemy.domains.sdf.lib.ArrayToSequence";
input : INPUT = e4;
output : OUTPUT = out;
arrayLength : PARAMETER <- M;
}
}

Figure 17. Actor interchange specification of actor-to-subgraph mapping of IFFT operation.- -
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7.6 Conclusion

By supporting automatic exporting and importing for source and target design tools, the first
and third porting steps are achieved. With the Actor Interchange Format and actor interchange
methods for actor mapping, the entire three-step DIF porting mechanism is demonstrated, as illus-
trated in Figure 15.

The actor interchange methods and the corresponding AIF syntax are able to solve most
attribute mismatch problems because the target attribute value can be expressed conditionally
based on all source attribute values and users can design actor interchange methods for different
scenarios. In addition, actor-to-subgraph mapping can solve certain actor mismatch problems
because users can collect several target actors to construct a subgraph such that the functionality
of the subgraph is compatible with that of the source actor. If an actor is absent, manually creating
the corresponding actor is the last resort; the features in AIF greatly help to minimize the need for
doing this. Once users make suitable provisions for all of the absent actors, the actor mapping
mechanism associated with AIF can take over the job in an efficient, systematic fashion.

DIF is capable of porting DSP applications across dataflow-based design tools without any
standard library. In this case, the Actor Interchange Format acts as a standard specification format
to specify the interchange information between tools. However, cooperating with an industrial
standard library for providing an actor functional interface can further facilitate the porting pro-
cess. Even with a standard library, the Actor Interchange Format is still essential in mapping
actors between tools and the standard library. This is a useful direction for further study in the DIF
project.

8 SAR Example

In this section, we demonstrate porting a synthetic aperture radar (SAR) benchmark application
from the Autocoding Toolset to Ptolemy II. This demonstration shows the effectiveness the port-
ing mechanisms developed through DIF and AIF. The synthetic aperture radar system examined
in this section was used as a benchmark in the Rapid Prototyping of Application Specific Signal
Processors (RASSP) program sponsored by DARPA [16]. It represents one type of application
where the processing is rather simple but the data rate is extremely high.

8.1 The SAR Application in the MCCI Autocoding Toolset

Figure 18 shows the SAR Functional Requirement developed in the MCCI Autocoding Toolset.
Figure 18.(a) illustrates the top-level coarse-grain dataflow graph, SAR_FR. The SAR system
consists of two major building blocks: range processing and azimuth processing. Passed in
through the SAR_IN input queue, data samples are processed by node RANGE and node AZI-
MUTH, then they are sent to the SAR_OUT output queue. Node RANGE and node AZIMUTH in
the SAR_FR graph represent the RNG_FR subgraph in Figure 18.(b) and the AZI_FR subgraph in
Figure 18.(c), respectively.

Figure 18.(b) illustrates range processing in the RNG_FR subgraph. It consists of four nodes.
Node PAD pads 16 zero-valued samples to the end of each 2032-sample row. Node WEIGHT mul-
tiplies each padded range row by a ZAYLOR_WTS weighting sequence containing 2048 weighting
values. Node COMPRESS performs a 2048 point Fast Fourier Transform on each range row.
Node COMPENSATE multiplies the transformed data by the radar cross-section compensation
RCS_WTS sequence containing 2048 compensating values.
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Figure 18.(c) illustrates the azimuth processing in the AZI_FR subgraph. It consists of four
nodes as follows. Node CORNERTURN corner-turns a 1024-by-2048 matrix by using matrix
transpose. Node FFT performs a 1024-point Fast Fourier Transform on each row of the trans-
posed matrix. Node CONVL multiplies each transformed row by a convolution kernel AZ KERN
sequence containing 1024 data values. Node IFFT performs an Inverse Fast Fourier Transform on
the convolution result and outputs only the last 512 samples.

8.2 Porting the SAR Application to Ptolemy II

Appendix C presents the DIF specification of the Autocoding Toolset SAR application showed in
Figure 18. With the actor interchange specification presented in Appendix D and the actor inter-
change methods developed in the DIF package, our actor mapping mechanism can translate the
DIF specification in Appendix C to the DIF specification for Ptolemy actors, which is presented
in Appendix E. Finally, the DIF-Ptolemy exporter/importer imports the DIF specification in
Appendix E to Ptolemy II. The ported graphical representation in Ptolemy II is showed in Figure
19.

Figure 19.(a) represents the top-level coarse grain graph of the SAR application in Ptolemy II.
The supernodes (blocks with red borders) RNG_FR and AZI_FR represent the range processing
subgraph and the azimuth processing subgraph, respectively. Figure 19.(b) is the range processing
RNG _FR graph and Figure 19.(c) is the azimuth processing graph. Node JFFT in Figure 18.(c)
outputs only half of the IFFT sequence and there is a factor of N difference; actor-to-subgraph
mapping is used to solve these actor mismatch problems. The node /FFT in Figure 18.(c) is
mapped to the IFFT_SUBGRAPH in Figure 19.(d). '

The MCCI Autocoding Toolset has I/0 procedures specified outside of its graph specifica-
tions. As a result, we manually added I/O actors to feed data samples as well as coefficients into
the SAR graph, and to write and display the results. Figure 20 shows the SAR application in
Ptolemy II after adding I/O actors. The supernode SAR_FR in Figure 20 represents the top-level
SAR in Figure 19.(a). Other actors in Figure 20 are used to read input samples, read coefficients,
write to a file, and display the absolute value of the output waveform.

The ported SAR benchmark application in Ptolemy II works correctly. Figure 21 shows the
output waveform in Ptolemy II. Figure 22 compares the output samples generated by Ptolemy II
with those generated by Autocoding Toolset, and reveals that the simulation results are the same
except for tolerable precision errors.

9 Conclusions and Future Work

In this report, we have introduced the DIF language version 0.2, the DIF package, and the sup-
ported dataflow models. We described our approach to automate the exporting and importing pro-
cesses. Finally, we developed the DIF porting mechanism and demonstrated it through a detailed
example of porting the SAR benchmark application between the MCCI Autocoding Toolset and
Ptolemy II.

In ongoing and future work on the DIF project, we are extending the DIF language and the
" DIF package to accommodate advanced dataflow semantics such as various additional forms of
dynamic graph elements and multi-mode graphs. Another useful direction for further work is inte-
gration with industrial dataflow-based design tools by combining algorithms in the DIF package
with their software synthesis and code generation techniques.
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Figure 21. Simulation result of the SAR benchmark application in Ptolemy II.
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Figure 22. Simulation results of the SAR benchmark application in Ptolemy II and MCCI Autoc-
oding Toolset.
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Appendix A
The SableCC (version 2.16.2) grammar of the Dataflow Interchange Format.

Package mapss.dif.language.sablecc;

Helpers
all = [0 .. 127];
digit = ['0' .. '9'];
non_digit = [[{'a' .. 'z'] + ['A' .. 'Z']1] + '_'1;
double = { '+' | '=' )? (digit*) '.' (digit+)
( (te' | 'E') ( '+' | '-' )? digit+ )?;
integer = ( '-' )? digit+;

tab = 9;
cr = 13;
1f = 10;
eol = cr 1f | cr | 1£; // This takes care of different platforms

not_cr_1f = [all -[cr + 1f]l;
not_star = [all -"*'];
not_star_slash = [not_star -'/'}l;

short_comment = '//' not_cr_1f* eol;
long_comment = '/*' not_star* '*'+ (not_star_slash not_star* '*'+)* Y/
comment = long comment | short__comment;
simple_escape_sequence = '\' ''' | '\"'" | "\\' |

“\b' | "\f'" | "\n' | \r' | '"\t';
octal_digit = ['0' .. '7'1;
octal_escape_sequence = '\' octal_digit octal_digit? octal_digit?;
hexadecimal_digit = [digit + [['a' .. '£'] + ['A' .. 'F']1];
hexadecimal_escape_sequence = '\x' hexadecimal_digit+;

escape_seqguence = simple_escape_sequence | octal_escape_sequence |
hexadecimal_escape_sequence;

s_char = [all -['"' + ['$" + ['\' + [10 + 13111]] | escape_sequence;
s_char_sequence = s_char*;
string = '"' s_char_sequence '"';
string_identifier = '$' s_char_sequence '$';
Tokens
blank = (' ' | tab | eol);

comment = comment;

1_bkt = '{';
r_ bkt = '}';
l par = '(';
rpar = ')';
lsgqr = '"{';
r_sqgqr = ']';
semicolon = ';*';
colon = ':';
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comma = ',';
s_gte v,
plus = '+
equal t=t,;
dot = '.';

graph = 'graph';

attribute = 'attribute’;
basedon = 'basedon';
interface = 'interface';
parameter = 'parameter';
refinement = 'refinement';
topology = 'topology';
actor = 'actor';

inputs = ‘'inputs’';
outputs = 'outputs';
nodes = ‘'nodes';

edges = 'edges';

integer = integer;
double = double;
true = 'true’';
false = 'false';
string = string;

string_tail = '+' (' ' | eol | tab)* string;

identifier = non_digit (digit

| non_digit)*;

dot_identifier = non_digit (digit | non_digit)* ('.' non_digit (digit
non_digit)* )+;
string identifier = string_identifier;
Ignored Tokens
blank,
comment ;
Productions
graph_list = graph_block*;
graph_block = identifier name 1_bkt block* r_bkt;
block =
{basedon} basedon basedon_body |
{topology} topology topology_body |
{interface} interface interface_body |
{parameter} parameter parameter_body |
{refinement} refinement refinement_body |
{builtin_attribute} identifier attribute_body |
{user_defined_attribute} attribute name attribute_body |
{actor)} actor name actor_body; o
name = {identifier} identifier | {string identifier} string_identifier;

/*************************************

* Definitions for basedon block:
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*/

basedon_body = 1_bkt basedon_expression r_bkt;
basedon_expression = name semicolon;

/*************************************

* Definitions for topology block:
*x/

topology body = 1_bkt topology_list* r_bkt;
topology_list =
{nodes) nodes equal name node_identifier_tail* semicolon |
{edges} edges equal edge_definition edge_definition_ tail* semicolon ;

node_identifier_tail = comma name;
edge_definition = [edge]:name 1_par
‘ [source] :name comma

[sink] :name r_par;
edge_definition_tail = comma edge_definition;

/*************************************

* Definitions for interface block:
*/

interface_body = 1_bkt interface_expression* r_bkt;

interface_expression =
{input} inputs equal port_definition port_definition_tail* semicolon |
{output} outputs equal port_definition port_definition_tail* semicolon;

port_definition = {plain} name |
{node} [port]:name colon [nodel]:name;
port_definition_tail = comma port_definition;

/*************************************

* Definitions for parameter block:
*/

parameter_body = 1_bkt parameter_expression* r_bkt;
parameter_expression =

{value} name equal value semicolon |
{range} name colon range_block semicolon ]
{blank} name semicolon;

range_block = range range_tail*;

range =
{closed_closed} 1_sqgr [left]:number comma [right] :number r_sqr |
{open_closed} 1 _par [left]:number comma [right] :number r_sqr |
{closed_open} 1_sqgr [left]:number comma [right]:number r_par |
{open_open} 1_par [left]:number comma [right]:number r_par |
{discrete} 1_bkt number discrete_range_number_tail* r_bkt;

discrete_range_number_tail = comma number;
range_tail = plus range;
number = {double} double | {integer} integer;
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/*************************************

* Definitions for refinement block:
*/

refinement_body = 1_bkt refinement_definition refinement_expression* r_bkt;
refinement_definition = {[graph]:name equal [node]:name semicolon;
refinement_expression =

{ports} [port]:name colon [element]:name semicolon |

{params} [subparam] :name equal [param]:name semicolon;

/*‘k***********************************

* Definitions for attribute block:
*/

attribute_body = 1_bkt attribute_expression* r_bkt;
attribute_expression =
{value} name? equal value semicolon |
{reference} [element]:name? equal [reference]:name semicolon |
{subelement_assign} [trggraph]:name [fst]:dot [trgele]:name equal
[srcgraph] :name [snd]:dot [srcele]:name semicolon |
{idlist} name? equal id_list semicolon;

id_list = name ref_id_tail+;
ref_id tail = comma name;

/*************************************

* Definitions for actor block:
*/

actor_body = 1_bkt actor_expression* r_bkt;

actor_expression =
{value} name type? equal value semicolon |
{reference} [argument]:name type? equal [reference]:name semicolon |
{reflist} name type? equal id_list semicolon;

type =
{identifier} colon identifier |
{dot_identifier} colon dot_identifier;

/*************************************

* Definitions for value:

*/

value =
{integer} integer |
{double} double |
{complex} 1_par [real]:double comma [imag]:double r_par |
{int_matrix} 1_sqr int_row int_row_tail* r_sqr |
{double_matrix} 1l_sqgr double_row double_row_tail* r_sqgr ‘
{complex_matrix} 1l_sqr complex_row complex_row_tail* r_sqr |
{string} concatenated_string_value ]
{boolean} boolean_value |
{array} 1_bkt value value_tail* r_bkt;
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int_row = integer integer_tail*;
integer_tail = comma integer;
int_row_tail = semicolon int_row;

double_row = double double_tail¥*;
double_tail = comma double;
double_row_tail = semicolon double_rxrow;

complex = 1 _par [reall:double comma [imagl:double r_par;

complex_row = complex complex_tail¥*;
complex_tail = comma complex;
complex_row_tail = semicolon complex_row;
concatenated_string value = string string_tail¥*;
boolean_value

{true} true

l
{false} false;

value_tail = comma value;
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Appendix B

The SableCC (version 2.16.2) grammar of the Actor Interchange Format.

Package mapss.dif.aif.sablecc;

Helpers

all = [0 .. 127];

digit = ['0' .. '9'];

non_digit = [[['a' .. 'z'] + ['A'" .. 'Z2']1] + '_'1;

double = ( '+' | '=' )? (digit*) '.' (digit+)
((te' | 'E'Y ( '+' | '=' )7 digit+ )?;

integer = ( '-' }? digit+;

tab = 9;
cr = 13;
1f = 10;
eocl = cr 1f | cr | 1f; // This takes care of different platforms

not_cr_1f = [all -[cr + 1f]};

not_star = [all -'*'];

not_star_slash = [not_star -'/'];

short_comment = '//' not_cr_l1lf* eol;

long_comment = '/*' not_star* '*'+ (not_star_slash not_star* '*'+)*x '/*;

comment = long comment ] short_comment;

simple_escape_sequence = ‘\' ''' | '\"' | "\\' |

"\b' | '\f' | "\n' | "\x* | "\t';
octal_digit = ['0' .. '7'];
octal_escape_sequence = '\' octal_digit octal_digit? octal_digit?;
hexadecimal_digit = [digit + [['a' .. '£'] + ['A' .. 'F'11]1;
hexadecimal_escape_sequence = '\x' hexadecimal_digit+;

escape_sequence = simple_escape_sequence | octal_escape_sequence |
hexadecimal_escape_sequence;

s_char = [all ~-['"" + ['S' + ['\' + [10 + 13]111] 1 escape_seguence;
s_char_sequence = s_char*;
string = '"' s_char_sequence '"';
string identifier = '$' s_char_sequence 'S$';
Tokens
blank = (' ' | tab | eol);

comment = comment;

1 bkt = '{*;
r_bkt = '}';
1l _par = '"(';
r_par = ')';
l sgqr = '"[';
r sqr = '1';
semicolon = ';';
colon = ':';
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comma = ‘',"';
s_gte v,
plus = '+';

equal = '=';

dot = '.';
map_to = '=->"';
map_from = '<-';
given_that = '|';

graph = ‘'graph';

interface = 'interface';
topology = ‘'topology’;
actor = 'actor';

inputs = 'inputs’;
outputs = 'outputs';
nodes = 'nodes';

edges = 'edges';

integer = integer;
double = double;

true = 'true';

false = 'false';

string = string;

string_tail = '+' (' ' | eol | tab)* string;

identifier = non_digit (digit | non_digit)*;
dot_identifier = non_digit (digit | non_digit)*

(*.' non_digit (digit | non_digit)* )+;
string identifier = string_ identifier;

Ignored Tokens

blank,
comment ;

Productions

aif_list = aif_block*;
aif_block = {actor} actor [trg]:type map_from [src]:type
method_expression? 1_bkt attribute_body* r_bkt |
{graph} graph [trg]l:type map_from [src]:type
method_expression? 1_bkt block* r_bkt;

type = {identifier)} identifier |
{dot_identifier} dot_identifier;
method_expression = given_that identifier
1_par argument argument_tail* r_par;
argument = {id} identifier |
{value} value;
argument_tail = comma argument;

/*************************************

* Definitions for attribute body:
*x/
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attribute_body = {mapping} attribute_mapping |
{assign} attribute_assign;
attribute_assign = attribute equal value semicolon;
attribute mapping = {single} [trg]:attribute map_from [src]:attribute
method_expression? semicolon |
{multi_to_one)} attribute map_from attributes semicolon |
{one_to_multi} attributes map_from attribute semicolon;

attributes = attribute attribute_tail+;
type_expression = colon type;
attributes = attribute attribute_tail+;
attribute_tail = comma attribute;

/*************************************

* Definitions for block:
*/

block = {topology} topology topology_body |
{interface} interface interface_body |
{actor} actor name actor_body;

name = {identifier)} identifier |
{string_identifier} string_ identifier;

/*************************************

* Definitions for topology block:
*/

topology_body = 1_bkt topology_list* r_bkt;
topology_list
{nodes} nodes equal name node_identifier_tail* semicolon |
{edges} edges equal edge_definition edge_definition_tail* semicolon ;

node_identifier_tail = comma name;
edge_definition = [edge] :name 1_par

[source] :name comma

[sink] :name r_par;
edge_definition tail = comma edge_definition;

/*************************************

* Definitions for interface block:
*/

interface_body = 1_bkt interface_expression* r_bkt;

interface_expression =
{input} inputs equal port_definition port_definition tail* semicolon |
{output} outputs equal port_definition port_definition_tail* semicolon;

port_definition = {plain} name port_mapping? |

{node} [port] :name colon [node] :name port_mapping?;
port_definition_tail = comma port_definition;
port_mapping = map_from attribute;
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/*************************************

* Definitions for actor block:
*/

actor_body = 1_bkt actor_expression* r_bkt;
actor_expression =
{value} name type_expression? equal value semicolon |
{reference} [argument]:name type_expression? equal
[reference] :name semicolon |
{map} name type_expression? map_from attribute
method_expression? semicolon |
{multi_map} name type_expression? map_from attributes semicolon |
{reflist} name type_expression? equal i1d_list semicolon;

id_list = name ref_id_tail+;
ref_id_tail = comma name;

/*************************************

* Definitions for value:
*/

value =
{integer} integer |
{double)} double |
{complex} 1l_par [reall:double comma [imag]:double r_par |
{int_matrix} 1l_sqr int_row int_row_tail* r_sqr |
{double_matrix} 1_sqgr double_row double_row_tail* r_sqr [
{complex_matrix} l_sqr complex_row complex row_tail* r_sqr |
{string} concatenated_string_value |
{boolean} boolean_value [
{array} 1_bkt value value_tail* r_bkt;

int_row = integer integer_tail*;
integer_tail = comma integer;
int_row_tail = semicolon int_row;

double_row = double double_tail*;
double_tail = comma double;
double_row_tail = semicolon double_row;

complex = 1_par [real]:double comma [imag]:double r_par;
complex_row = complex complex_tail*;
complex_tail = comma complex;
complex_row_tail = semicolon complex_row;
concatenated_string_value = string string tail*;
boolean_value =

{true} true’

l
{false} false;

value_tail = comma value;
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Appendix C

The DIF specification of the MCCI SAR benchmark application.

dif RNG_FR {
topology {
nodes = PAD, WEIGHT, COMPRESS, COMPENSATE;
edges = PADDED (PAD, WEIGHT),
WEIGHTED (WEIGHT, COMPRESS),
COMPRESSED (COMPRESS, COMPENSATE) ;
}
interface {
inputs = RANGE_IN : PAD, TAYLOR_WTS : WEIGHT, RCS_WTS : COMPENSATE;
outputs = RANGE_OUT : COMPENSATE;
}
parameter {
NFFT;
NR;
NPAD;
PAD_VAL = (0.0, 0.0);
}
actoxr PAD {
computation = "D_VFILL" ;

N = NR;

P = NPAD;

V = PAD_VAL;
X = RANGE_IN;
Y = PADDED;

}
actor WEIGHT {

computation = "D_VMUL";
N = NFFT;

X = PADDED;

Y = TAYLOR_WTS;

Z = WEIGHTED;

}
actor COMPRESS ({

computation = "D_FFT";
N = NFFT;
FI = 0;

X = WEIGHTED;

Y = COMPRESSED;
}
actor COMPENSATE {

computation = "D_VMUL";
N = NFFT;

X = COMPRESSED;

Y = RCS_WTS;

Z = RANGE_OUT;

dif AZI_FR {

51




topology {

nodes = CORNERTURN, FFT, CONVL, IFFT;
edges = YFCO (CORNERTURN, FFT),

Y_AZ (FFT, CONVL),

VMAUL (CONVL, IFFT);

}

interface {
inputs =
outputs =

CORNERTURN, AZ_KERN
IFFT;

AZI_N CONVL;
AZI_OUT
}
parameter
NFFT;
RNG_FFT;
}
actor CORNERTURN {
computation = "D_MTRAN";
= NFFT;
= RNG_FFT;
AZI_N;
YFCO;

KX ER
f

}

actor FFT {
computation
N = NFFT;
FI = 0;

"D_FFT";

}

X
Y

actor

YFCO;
Y_AZ;

CONVL {

computation
N NFFT;
= Y_AZ;
AZ_KERN;
VMAUL;

"D_VMUL";

N
il

}

actor IFFT {
computation
N = NFFT;
FI = 1;

= VMAUL;

AZI_OUT;

"NFFT/2";

= "(NFFT/2)+1";

"D_FFT";

™

fl

dif FR_SAR {
topolegy {

" nodes = RANGE, AZIMUTH;
edges = RNG_OUT (RANGE, AZIMUTH) ;

}
interface {
inputs =
outputs =

RANGE, TAYLOR
AZIMUTH;

SAR_IN RCS RANGE, AZ_KERN AZIMUTH;

SAR_OUT

RANGE,
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}
parameter {
NFFT_RNG = 256;
NFFT_AZI = 128;
N_R = 235;
NFILL = "NFFT_RNG-N_R";
}
refinement ({
RNG_FR = RANGE;
RANGE_IN : SAR_IN;
RANGE_OUT : RNG_OUT;
TAYLOR_WTS : TAYLOR;
RCS_WTS : RCS;
NFFT = NFFT_RNG;
NR = N_R;
NPAD = NFILL;
}
refinement {
AZI_FR = AZIMUTH;
AZI_N : RNG_OUT;
AZI_OUT : SAR_OUT;
AZ_KERN : AZ_KERN;
NFFT = NFFT_AZI;
RNG_FFT = NFFT_RNG;
}
actor RANGE ({
computation = "SUBGRAPH";
}
actor AZIMUTH {
computation = "SUBGRAPH";
}
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Appendix D

The actor interchange specification for Autocoding Toolset to Ptolemy II actor mapping.

graph ptolemy.actor.TypedCompositeActor <- D_FFT

| ifExpression("FI == 1 && M != N") {
topology ({
nodes = IFFT, Scale, SequenceToArray, ArrayExtract, ArrayToSequence;

el (IFFT, Scale),

e2 (Scale, SequenceToArray),

e3 (SequenceToArray, ArrayExtract),
ed (ArrayExtract, ArrayToSequence);

edges

}
interface {
inputs = in : IFFT <- X;
outputs = out : ArrayToSequence <- Y;
}
actor IFFT {

computation = "ptolemy.domains.sdf.lib.IFFT";
order : PARAMETER <- N | conditionalAssign(
"log(N)/log(2)", "(log(N)/log(2))-rint(log(N)/log(2)}) == 0");

input : INPUT = in;
output : OUTPUT = el;
}
actor Scale {
computation = "ptolemy.actor.lib.Scale";
input : INPUT = el;
output : OUTPUT = e2;
factor : PARAMETER <- N;
}
actor SequenceToArray {
computation = "ptolemy.domains.sdf.lib.SequenceToArray";
input : INPUT = e2;
output : OUTPUT = e3;
arraylLength : PARAMETER <- N;
}
actor ArrayExtract {
computation = "ptolemy.actor.lib.ArrayExtract";
input : INPUT = e3;
output : QUTPUT = e4;
sourcePosition : PARAMETER <- B | assign("B-1");
extractLength : PARAMETER <- M;
destinationPosition : PARAMETER = 0;
outputArraylLength : PARAMETER <- M;
}
actor ArrayToSequence {
computation = "ptolemy.domains.sdf.lib.ArrayToSequence";
input : INPUT = e4;
output : OUTPUT = out;
arrayLength : PARAMETER <- M;
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actor ptolemy.domains.sdf.lib.FFT <- D_FFT | ifExpression("FI == 0") ({
order : PARAMETER <- N | conditionalAssign(
"log(N)/log(2)", "(log(N)/log{2))-rint(log(N)/log(2)) == 0");
input : INPUT <- X;
output : OUTPUT <- Y;
}

actor ptolemy.domains.sdf.lib.IFFT <- D_FFT l ifExpression("FI == 1") {
order : PARAMETER <- N | conditionalAssign(
"log(N)/log{2)", "(log(N)/log(2))-rint(log(N)/log(2)) == 0");

input : INPUT <- X;
output : OUTPUT <- Y;

actor mapss.applications.sar.MatrixTranspose <- D_MTRAN {
rowN : PARAMETER <- M;
colN : PARAMETER <- N;
input : INPUT <- X;
output : OUTPUT <- Y;

actor ptolemy.actor.lib.MultiplyDivide <- D_VMUL {
multiply : INPUT <- X, Y;
output : OUTPUT <- Z;

}

actor mapss.applications.sar.SequencePad <- D_VFILL {
inputLength : PARAMETER <- N;
outputlLength : PARAMETER <- P | assign("P+N");
padvValue : PARAMETER <- V;
input : INPUT <- X;
output : OUTPUT <- Y;

actor ptolemy.actor.TypedCompositeActor <- SUBGRAPH {}



Appendix E

The DIF specification of the ported SAR benchmark application in Ptolemy II.

dif IFFT_SUBGRAPH ({

topology {
nodes = IFFT,
Scale,
SequenceToArray,
ArrayExtract,
ArrayToSequence;

edges = el (IFFT, Scale),
e2 (Scale, SequenceToArray),
e3d (SequenceToArray, ArrayExtract),
ed (ArrayExtract, ArrayToSequence);
}
interface ({
inputs = in:IFFT;
outputs = out:ArrayToSeqguence;
}
actor IFFT {
computation = "ptolemy.domains.sdf.lib.IFFT";
order : PARAMETER = 7.0;
input : INPUT = in;
output : OUTPUT = el;
}
actor Scale {
computation = "ptolemy.actor.lib.Scale";
input : INPUT = el;
output : OQUTPUT = e2;
factor : PARAMETER = 128;
}
actor SequenceToArray {
computation = "ptolemy.domains.sdf.lib.SequenceToArray";
input : INPUT = e2;
output : OUTPUT = e3;
arraylLength : PARAMETER = 128;
}
actor ArrayExtract {
computation = "ptolemy.actor.lib.ArrayExtract";
input : INPUT = e3;
output : OUTPUT = ed;
sourcePosition : PARAMETER = 64;
extractlLength : PARAMETER = 64;
destinationPosition : PARAMETER = 0;
outputArrayLength : PARAMETER = 64;
}
actor ArrayToSecquence { W
computation = "ptolemy.domains.sdf.lib.ArrayToSequence";
input : INPUT = e4;
output : OUTPUT = out;
arrayLength : PARAMETER = 64;
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dif RNG_FR {

topology {
nodes = PAD,
WEIGHT,
COMPRESS,
COMPENSATE;

edges = PADDED (PAD, WEIGHT),
WEIGHTED (WEIGHT, COMPRESS),
COMPRESSED (COMPRESS, COMPENSATE) ;
}
interface {
inputs = RANGE_JIN:PAD,
TAYLOR_WTS:WEIGHT,
RCS_WTS : COMPENSATE;
outputs = RANGE_OUT:COMPENSATE;
}
parameter {
NFFT;
NR;
NPAD;
PAD_VAL = (0.0,0.0);
}
actor PAD {
computation = "mapss.applications.sar.SequencePad";
inputLength : PARAMETER = NR;
outputLength : PARAMETER = 256;
padvValue : PARAMETER = PAD_VAL;
input : INPUT = RANGE_IN;
output : OUTPUT = PADDED;
}
actor WEIGHT {
computation = "ptolemy.actor.lib.MultiplyPivide";
multiply : INPUT = PADDED, TAYLOR_WTS;
output : OUTPUT = WEIGHTED;
}
actor COMPRESS {
computation = "ptolemy.domains.sdf.lib.FFT";
order : PARAMETER = 8.0;
input : INPUT = WEIGHTED;
output : OUTPUT = COMPRESSED;
}
actor COMPENSATE {
computation = "ptolemy.actor.lib.MultiplyDivide";
multiply : INPUT = COMPRESSED, RCS_WTS;
output : OUTPUT = RANGE_OUT;

dif AZI_FR {
topology {
nodes = CORNERTURN,
FFT,
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CONVL,
VMAUL (CONVL, IFFT);
}

interface {
|
\
|
|
|

IFFT;
edges = YFCO (CORNERTURN, FFT),
Y _AZ (FFT, CONVL),
inputs = AZI_N:CORNERTURN,
AZ_XERN:CONVL;
outputs = AZI_OUT:IFFT;
}
parameter {
NFFT;
RNG_FFT;
}
refinement {
IFFT_SUBGRAPH = IFFT;
in : VMAUL;
out : AZI_OUT;

}
actor CORNERTURN {
computation = "mapss.applications.sar.MatrixTranspose";
rowN : PARAMETER = NFFT;
colN : PARAMETER = RNG_FFT;
input : INPUT = AZI_N;
output : OUTPUT = YFCO;
}
actor FFT {
computation = "ptolemy.domains.sdf.lib.FFT";
order : PARAMETER = 7.0;
input : INPUT = YFCO;
output : OUTPUT = Y_AZ;
}

actor CONVL {
computation = "ptolemy.actor.lib.MultiplyDivide";
multiply : INPUT = Y_AZ, AZ_KERN;
output : OUTPUT = VMAUL;

}
actor IFFT {
computation = "ptolemy.actor.TypedCompositeActor”;
}
}
dif FR_SAR {
topology {
nodes = RANGE,

AZIMUTH;
edges = RNG_OUT (RANGE, AZIMUTH); o
;o Ce
interface {
inputs = SAR_IN:RANGE,
TAYLOR: RANGE,
RCS :RANGE,
AZ_KERN:AZIMUTH;
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outputs = SAR_OUT:AZIMUTH;

}

parameter {

NFFT_RNG = 256;
NFFT_AZI = 128;
N_R = 235;

NFILL = "NFFT_RNG-N_R";
}
refinement {
RNG_FR = RANGE;
RANGE_IN : SAR_IN;
TAYLOR_WTS : TAYLOR;
RCS_WTS : RCS;
RANGE_OUT : RNG_OUT;
NFFT = NFFT_RNG;
NR = N_R;
NPAD = NFILL;
}
refinement {
AZI_FR = AZIMUTH;
AZI_N : RNG_OUT;
AZ_KERN : AZ_KXERN;
AZI_OUT : SAR_OUT;
NFFT = NFFT_AZI;
RNG_FFT = NFFT_RNG;
}
actor RANGE {
computation = "ptolemy.actor.TypedCompositeActor”;
}
actor AZIMUTH {
computation = "ptolemy.actor.TypedCompositeActor";
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Top Level SAR Graph SPGN

%% Functional Requirements Graph for RASSP SAR example
%%
%% One Polarization, full processing
%%
%% Carl Ecklund
%% MCCI
%%
%GRAPH( FR_SAR
GIP =
%% Taylor weighting to reduce sidelobes of
%% compressed pulse.
%%
TAYLOR : CFLOAT ARRAY(2048),

%% Compressed pulse radar cross section weights.
%%
RCS : FLOAT ARRAY (2048)
VAR = %% Azimuth convolution kerne!l - Selection based on slant range.
%% Total of 31 kemnels. 16 used in processing one frame.
%% Selection is based on range row being processed. Same
%% kernel is used for 128 rows.
AZ_KERN : CFLOAT ARRAY (1024)
INPUTQ =
%% Complex integer data that has been FIR filtered
%%
%% SAR_IN:CINT

%% using cfloat data set
SAR_IN : CFLOAT
OUTPUTQ =
%% Processed data out
%%
SAR_OUT : CFLOAT)
%GIP(NFFT_RNG : INT INITIALIZE TO 2048 )
%GIP(NFFT_AZI : INT INITIALIZE TO 1024 )
%GIP{ N_R : INT INITIALIZE TO 2032)
%GIP( NFILL : INT INITIALIZE TO NFFT_RNG-N_R)
%QUEUE( RNG_OUT : CFLOAT INITIALIZE TO (NFFT_RNG*NFFT_AZI)/2 OF
<0.0E0,0.0E0> )
%% Graph RNG_FR implements functional requirements for range processing
%%
%SUBGRAPH( RANGE
GRAPH =RNG_FR
GIP =NFFT_RNG,
N_R,
NFILL,
TAYLOR,
RCS
INPUTQ = SAR_IN
OUTPUTQ = RNG_OUT)

%% Graph AZ|_FR implements functional requirements for azimuth processing

%%
%SUBGRAPH( AZIMUTH
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GRAPH =AZI_FR
GIP =NFFT_AZI,
NFFT_RNG
VAR =AZ_KERN
INPUTQ =RNG_OUT
OUTPUTQ = SAR_OUT)
%ENDGRAPH
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SAR RANGE Processing Graph SPGN

%% Functional requirements graph for range processing of
%% SAR example.
%%
%GRAPH(RNG_FR
GIP =NFFT:INT,
NR:INT,
NPAD : INT,
TAYLOR_WTS : CFLOAT ARRAY (2048),
RCS_WTS : FLOAT ARRAY(2048)
INPUTQ = %% use cfloat data for initial verification
%% RANGE_IN : CINT
RANGE_IN : CFLOAT
OUTPUTQ = RANGE_OUT : CFLOAT)
%GIP( PAD_VAL : CFLOAT INITIALIZE TO <0.0E0,0.0E0> )
%GIP(NRNG : INT INITIALIZE TO 512)
%QUEUE( PADDED : CFLOAT)
%QUEUE( WEIGHTED : CFLOAT )
%QUEUE( COMPRESSED : CFLOAT)

%% Pad range row to NFFT_RNG size
%%
%NODE( PAD
PRIMITIVE = D_VFILL
PRIM_IN =NR,
NPAD,
UNUSED,
PAD_VAL,
%% for initial testing use cfloat data into graph
%% conversion node not required!
%% pipe cfloat data in directly to fill
%% CONVERTED THRESHOLD = NR*NRNG
RANGE_IN THRESHOLD = NRNG*NR
PRIM_OUT = PADDED)

%% Weight using Taylor function prior to FFT.
%%
%NODE( WEIGHT
PRIMITIVE = D_VMUL
PRIM_IN = NFFT,
UNUSED,
PADDED THRESHOLD = NRNG*NFFT,
TAYLOR_WTS
PRIM_OUT = WEIGHTED)

%NODE( COMPRESS
PRIMITIVE = D_FFT
PRIM_IN =NFFT,
UNUSED,
UNUSED,
UNUSED,
UNUSED,
WEIGHTED THRESHOLD = NRNG*NFFT
PRIM_OUT = COMPRESSED )
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%% RCS compensation
%%
%NODE( COMPENSATE
PRIMITIVE = D_VMUL
PRIM_IN = NFFT,
UNUSED,
COMPRESSED THRESHOLD = NRNG*NFFT,
RCS_WTS

PRIM_OUT = RANGE_OUT)
%ENDGRAPH
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SAR AZIMUTH Processing Graph SPGN

%% Functional Requirements for azimuth processing
%%
%GRAPH(AZI_FR

GIP =NFFT:INT,

RNG_FFT :INT

VAR =AZ_KERN : CFLOAT ARRAY(1024)

INPUTQ = AZI_N: CFLOAT

OUTPUTQ = AZI_OUT : CFLOAT)

%QUEUE( YFCO : CFLOAT)
%QUEUE(Y_AZ : CFLOAT)
%QUEUE( VMAUL : CFLOAT)

%% Comerturn the data using a matrix transpose operation.
%%
%NODE( CORNERTURN
PRIMITIVE = D_MTRANS
PRIM_IN = NFFT,
RNG_FFT,
AZI_N THRESHOLD = NFFT*RNG_FFT
CONSUME = NFFT*RNG_FFT/2
PRIM_OUT =YFCO)
%NODE( FFT
PRIMITIVE = D_FFT
PRIM_IN = NFFT,
UNUSED,
UNUSED,
UNUSED,
UNUSED,
YFCO THRESHOLD = NFFT*RNG_FFT
PRIM_OUT =Y_AZ)
%NODE( CONVL
PRIMITIVE = D_VMUL
PRIM_IN = NFFT,
UNUSED,
Y_AZ THRESHOLD = NFFT*RNG_FFT,
AZ_KERN
PRIM_OUT =VMAUL)
%NODE(IFFT
PRIMITIVE = D_FFT
PRIM_IN = NFFT,
NFFT/2,
1,
(NFFT/2)+1,
UNUSED,
VMAUL THRESHOLD = NFFT*RNG_FFT
PRIM_OUT = AZI_OUT)
%ENDGRAPH
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DIF SAR Graph

dif FR_SAR {
topology {
nodes = RANGE, AZIMUTH,;
edges = RNGOUT (RANGE, AZIMUTH);

interface {
inputs = SAR_IN : RANGE,
TAYLOR : RANGE,
RCS : RANGE,
AZKERN : AZIMUTH;
outputs = SAR_OUT : AZIMUTH;
}
parameter {
NFFT_RNG = 2048;
NFFT_AZ! = 1024,
N_R =2032;
NFILL = 16;

refinement {
RNG_FR = RANGE;
RANGE_IN : SAR_IN;
RANGE_OUT : RNGOUT;
TAYLOR_WTS : TAYLOR;
RCS_WTS : RCS;
NFFT = NFFT_RNG;
NR = N_R;
NPAD = NFILL;

refinement {
AZI_FR = AZIMUTH;
AZI_IN : RNGOUT,
AZI_OUT : SAR_OUT;
AZ_KERN : AZKERN,;
NFFT = NFFT_AZI,
RNG_FFT = NFFT_RNG;

}
actor RANGE {
computation = "SUBGRAPH";

}
actor AZIMUTH {
computation = "SUBGRAPH",
}
}
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DIF RANGE Processing Graph Generated from SPGN

dif RNG_FR

{
topology

nodes =
PAD,
WEIGHT,
COMPRESS,
COMPENSATE;
edges =
PADDED (PAD, WEIGHT),
WEIGHTED (WEIGHT, COMPRESS),
COMPRESSED (COMPRESS, COMPENSATE),
}

interface
{
inputs =
RANGE_IN : PAD;
outputs =
RANGE_OUT : COMPENSATE;
}

parameter

{

NFFT = 2048;

NR = 2032;

NPAD = 16;

TAYLOR_WTS;

RCS_WTS;

PAD_VAL = (0.00000000000000, 0.00000000000000);
NRNG = 512;

}

production

{

PADDED = 1048576;
WEIGHTED = 1048576,
COMPRESSED = 1048576;
RANGE_OUT = 1048576;

}

consumption

{

RANGE_IN = 1040384,
PADDED = 1048576;
WEIGHTED = 1048576
COMPRESSED = 1048576;

}
attribute threshold

{

RANGE_IN = 1040384,
PADDED = 1048576,
WEIGHTED = 1048576,
COMPRESSED = 1048576;

}
actor PAD
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{

computation = "D_VFILL";
N =NR;

P = NPAD;

J = "UNUSED",

V = PAD_VAL;

X = RANGE_IN;

Y = PADDED;

}
actor WEIGHT

{

computation = "D_VMUL";
N = NFFT,;

F = "UNUSED",

X = PADDED;

Y = TAYLOR_WTS;

Z = WEIGHTED;

}
actor COMPRESS

{

computation = "D_FFT",
N = NFFT;

M = "UNUSED",

Fl = "UNUSED",

B = "UNUSED",

OV = "UNUSED";

X = WEIGHTED;

Y = COMPRESSED;

}
actor COMPENSATE

{

computation = "D_VMUL";
N = NFFT,

F = "UNUSED",

X = COMPRESSED,;

Y = RCS_WTS;

Z = RANGE_OUT;

}
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DIF AZIMUTH Processing Graph Generated from SPGN

dif AZI_FR
{
topology
{
nodes =
CORNERTURN,
FFT,
CONVL,
IFFT;
edges =
YFCO (CORNERTURN, FFT),
Y_AZ (FFT, CONVL),
VMAUL (CONVL, IFFT);
}

interface
{
inputs =
AZI_N : CORNERTURN,;
outputs =
AZI_OUT : IFFT,
}

parameter

{
NFFT = 1024;
RNG_FFT = 2048,
AZ_KERN;
}

production

{

YFCO = 2097152;
Y_AZ = 2097152;
VMAUL = 2097152;
AZ|_OUT = 1048576;
}

consumption

{

AZI_N = 1048576;
YFCO = 2097152;
Y_AZ = 2097152;
VMAUL = 2097152;

}
attribute threshold

{

AZI_N =2097152;
YFCO = 2097152,
Y_AZ = 2097152,
VMAUL = 2097152;

}
actor CORNERTURN
{
computation = "D_MTRANS",
M = NFFT,

N = RNG_FFT;
X =AZ_N;
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Y =YFCO;

}
actor FFT

{

computation = "D_FFT",
N = NFFT;

M = "UNUSED",

Fl = "UNUSED";

B = "UNUSED";

OV = "UNUSED";

X =YFCO;

Y =Y_AZ

}
actor CONVL

{

computation = "D_VMUL",
N = NFFT,;

F = "UNUSED",
X=Y_AZ,

Y = AZ_KERN;

Z = VMAUL,;

}
actor IFFT
{
computation = "D_FFT",
N = NFFT;
M ="(NFFT /2)",
Fl=1;
B ="((NFFT/2) +1)",
OV = "UNUSED",
X =VMAUL;
Y = AZI_OUT,
}

STTR 03-003 Appendix B

B12




DIF SAR Graph

dif FR_SAR {
topology {
nodes = RANGE, AZIMUTH,;
edges = RNGOUT (RANGE, AZIMUTH);

interface {
inputs = SAR_IN : RANGE,
TAYLOR : RANGE,
RCS : RANGE,
AZKERN : AZIMUTH;
outputs = SAR_OUT : AZIMUTH;

parameter {
NFFT-RNG = 2048;
NFFT_AZI = 1024,
N_R =2032;
NFILL = 16;

refinement {
RNG_FR = RANGE;
RANGE_IN : SAR_IN;
RANGE_OUT : RNGOUT;
TAYLOR_WTS : TAYLOR;
RCS_WTS : RCS;
NFFT = NFFT_RNG;
NR=N_R;
NPAD = NFILL,;

refinement {
AZ|_FR = AZIMUTH;
AZI_IN : RNGOUT;
AZI_OUT : SAR_OUT;
AZ_KERN : AZKERN,;
| NEFT = NFFT_AZI;
RNG_FFT = NFFT_RNG;
|

}
actor RANGE {
computation = "SUBGRAPH",

}
actor AZIMUTH {
computation = "SUBGRAPH";
}
}
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dif RNG_FR {
topology {

DIF RANGE Graph

nodes = PAD, WEIGHT, COMPRESS, COMPENSATE;
edges = PADDED (PAD, WEIGHT),
WEIGHTED (WEIGHT, COMPRESS),
COMPRESSED (COMPRESS, COMPENSATE),

interface {

inputs = RANGE_IN : PAD,
TAYLOR_WTS : WEIGHT,
RCS_WTS : COMPENSATE;

outputs = RANGE_OUT : COMPENSATE,

parameter {
NFFT;
NR;
NPAD;
NRNG = 512;
PAD_VAL = 0.0;

}
actor PAD {

computation = "D_VFILL" ;

N =NR;

P = NPAD;

V= PAD_VAL,;
X =RANGE_IN,;
Y = PADDED;

}
actor WEIGHT {

computation = "D_VMUL";

N = NFFT:
X = PADDED;

Y = TAYLOR_WTS;
Z = WEIGHTED;

}

actor COMPRESS {
computation = "D_FFT";
N = NFFT;
Fl=0;
X =WEIGHTED;
Y = COMPRESSED;

}

actor COMPENSATE {
computation = "D_VMUL";
N = NFFT;
X = COMPRESSED;
Y = RCS_WTS;
Z = RANGE_OUT;

}

}
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DIF AZIMUTH Graph

dif AZI_FR {
topology {
nodes = CORNERTURN, FFT, CONVL, IFFT;
edges = YFCO (CORNERTURN, FFT),
Y_AZ (FFT, CONVL),
VMAUL (CONVL, IFFT);

interface {
inputs = AZI_IN : CORNERTURN,
AZ_KERN : CONVL;
outputs = AZI_OUT : IFFT,

parameter {
NFFT,
RNG_FFT;

}

actor CORNERTURN {
computation = "D_MTRAN";
M = NFFT,
N = RNG_FFT,
X=AZI_IN;
Y = YFCO;

}
actor FFT {
computation = "D_FFT",
N = NFFT;
Fl =0,
X=YFCO;
Y=Y_AZ,

}

actor CONVL {
computation = "D_VMUL";
N = NFFT;
X=Y_AZ .
Y = AZ_KERN;
Z=VMAUL,;

}

actor IFFT {
computation = "D_FFT",
N = NFFT;
Fl =1;
X = VMAUL;
Y = AZI_OUT;

}

}
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SAR Imported SPGN with Manual Edits

%GRAPH (FR_SAR
INPUTQ =
SAR_IN : CFLOAT,

TAYLOR : CFLOAT ARRAY(2048), %% these 2 items were GIPs in source SPGN

RCS : FLOAT ARRAY(2048), %% ->changed to Qs due to limitations
%% of DIF "interface" and "params”
%% statements?

AZKERN : CFLOAT ARRAY(1024) %% was a VAR in source SPGN
%% -> also changed for <above> reason?

OUTPUTQ = SAR_OUT : CFLOAT
)

%GIP (NFFT_AZI : INT
INITIALIZE TO 1024

)
%GIP (NFFT_RNG : INT
INITIALIZE TO 2048

)
%GIP (NFILL : INT
INITIALIZE TO 16

)

%GIP (N_R : INT
INITIALIZE TO 2032
)

%QUEUE (RNGOUT : CFLOAT
INITIALIZE TO %% initialization (amt & vals)
{NFFT_RNG’NFFT_AZIy2 OF <0.0E0,0.0F0>) %% lost in DIF representation

%SUBGRAPH (RANGE
GRAPH = RNG_FR
GIP =

NFFT_RNG,
NFILL,
N_R
INPUTQ =
SAR_IN,
TAYLOR,
RCS
OUTPUTQ =
RNGOUT

)
%SUBGRAPH (AZIMUTH
GRAPH = AZI_FR
GIP =
NFFT_AZI,
NFFT_RNG
INPUTQ =
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RNGOUT,
AZKERN
OuTPUTQ =

SAR_OUT

)
%ENDGRAPH
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RANGE Processing Imported SPGN with Manual Edits

%GRAPH (RNG_FR
GIP =
NFFT : INT,
NPAD : INT,
NR: INT
INPUTQ =
RANGE_IN : CFLOAT,
TAYLOR_WTS : CFLOAT ARRAY(2048),
RCS_WTS : FLOAT ARRAY(2048)
OUTPUTQ = RANGE_OUT : CFLOAT

)

%GIP (NRNG : INT
INITIALIZE TO 512

)

%GIP (PAD_VAL : CFLOAT %% PAD_VAL should be CFLOAT
INITIALIZE TO <0.0EC, 0.0EC>
)

%QUEUE (PADDED : CFLOAT)
%QUEUE (WEIGHTED : CFLOAT)
%QUEUE (COMPRESSED : CFLOAT)

%NODE (PAD
PRIMITIVE = D_VFILL
PRIM_IN =
NR,
NPAD,
UNUSED, %% UNUSED param missing in DIF
PAD_VAL,
RANGE_IN
THRESHOLD = NRNG*NR %% no NEPS in DIF
PRIM_OUT =
PADDED

)
%NODE (WEIGHT
PRIMITIVE = D_VMUL
PRIM_IN =
NFFT,
UNUSED, %% UNUSED params missing in DIF
PADDED
THRESHOLD = NRNG*NFFT, %% no NEPS in DIF
TAYLOR_WTS
THRESHOLD = 1 %% TAYLOR_WTS were specified as a GIP,
CONSUME = 0 %% not a Q, in source SPGN
PRIM_OUT =
WEIGHTED

)
%NODE (COMPRESS
PRIMITIVE = D_FFT

STTR 03-003 Appendix B B18




PRIM_IN =
NFFT,
UNUSED, %% UNUSED params missing in DIF
0!
UNUSED,
UNUSED,
WEIGHTED
THRESHOLD = NRNG*NFFT
PRIM_OUT =
COMPRESSED

)
%NODE (COMPENSATE
PRIMITIVE = D_VMUL
PRIM_IN =
NFFT,
UNUSED,
COMPRESSED
THRESHOLD = NRNG*NFFT,
RCS_WTS
THRESHOLD = 1 %% RCS_WTS were specified as a GIP,
CONSUME =0 %% not a Q, in source SPGN
PRIM_OUT =
RANGE_OUT

)
%ENDGRAPH
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The DIF Specification of the Multi-rate Filter Bank Application

dif Truncated_Sinewave {

topology {
nodes = Ramp,
Pulse,
TrigFunction,
MultiplyDivide,

${center/2}$;
edges = e0 (Ramp, TrigFunction),
el (Pulse, ${center/2}$),
e2 (TrigFunction, MultiplyDivide),
e3 (${center/2}$, MultiplyDivide);
}

interface ({
outputs = output:MultiplyDivide;

}
attribute _vergilsize { = [600,400]; }

attribute _vergilLocation { = [232,252]; }
attribute frequency { = 0.6283185307179586; }
attribute center { = 50; }

attribute lengthOfSineBurst { = 50; }
actor Ramp {
computation = "ptolemy.actor.lib.Ramp";
firingCountLimit : PARAMETER = 0;
init : PARAMETER = -79.57747154594767;
step : PARAMETER = 0.6283185307179586;
output : OUTPUT = e0;
}
actor Pulse {
computation = "ptolemy.actor.lib.Pulse";
firingCountlLimit : PARAMETER = 0;
indexes : PARAMETER =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26
,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,5
0}:
values : PARAMETER =
{1,%,1,1,2,1,1,1,1,1,1,1,1,12,1,13,1,}%,1,1,141,1,14,1,1,12,1,2,1,1%,1,1,1,1,1,
i,1,1,1,1,1,1,1,1,1,1,%1,1,1,1,0};
repeat : PARAMETER = false;
output : OUTPUT = el;
}
actor TrigFunction ({
computation = "ptolemy.actor.lib.TrigFunction";
function : PARAMETER = "cos";
input : INPUT = eO0;
output : OUTPUT = e2;
}
actor MultiplyDivide {
computation = "ptolemy.actor.lib.MultiplyDivide";
multiply : INPUT = e2, e3;
output : OUTPUT = output;
}
actor ${center/2}$ {
computation = "mapss.applications.lib.SampleDelay";
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initialOutputs : PARAMETER = {0};
repetitionCount : PARAMETER = 25;
repetitionvValue : PARAMETER = 0;
input : INPUT = el;

output : OUTPUT = e3;

}

dif Analysis Filter Pairl {
topology {
nodes = FIR_highpass,
FIR_lowpass,
fork0;
edges = e4 (forkO, FIR_highpass),
e5 (fork0O, FIR lowpass);
}
interface {
inputs = input:fork0;
outputs = outputl:FIR_highpass,
output2:FIR_lowpass;
}
attribute _vergilsize { = [600,400]; }
attribute _vergilLocation { = [211,474]; }
attribute lowpass { = "gmf.lowpass.filter"; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR_highpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-7.0E-4,-
0.011344,0.011408,0.023464,—0.001747,-0.044403,—0.204294,0.647669,—

0.647669,0.204294,0.044403,0.001747,—0.023464,—0.011408,0.011344,7.0E—

4,-0.001224};
input : INPUT = e4;
output : OUTPUT = outputl;
}

actor FIR_lowpass {
computation = "ptolemy.domains.sdf.lib.FIR";

decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-6.98E-4, -
0.011833,0.011682,0.071283,-0.030986, -
0.226242,0.069248,0.731574,0.731574,0.069248,-0.226242, -
0.030986,0.071283,0.011682,-0.011833,-6.98E-4,0.001224};
input : INPUT = e5;
output : OUTPUT = output2;
}
actor forkO {
computation = "dif.fork";
}
}

dif Analysis_Filter Pair2 {

topology {
nodes = FIR_highpass,
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FIR_lowpass,
forkl;

edges = e6 (forkl, FIR_highpass),
e7 (forkl, FIR_lowpass);

interface {
inputs = input:forkl;
outputs = outputl:FIR_highpass,
output2:FIR_lowpass;
}
attribute _vergilsize { = [600,400]; }
attribute _yergilLocation { = [211,474]; }

attribute lowpass { = "gmf.lowpass.filter"”; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR highpass {

computation = "ptolemy.domains.sdf.lib.FIR";

decimation : PARBMETER = 2;

decimationPhase : PARAMETER = 1;

interpolation : PARAMETER = 1;

taps : PARAMETER = {0.001224,-7.0E-4,-
0.011344,0.011408,0.023464,—0.001747,—0.044403,—0.204294,0.647669,—
0.647669,0.204294,0.044403,0.001747,—0.023464,—0.011408,0.011344,7.0E—
4,-0.001224};

input : INPUT = e6;

output : OUTPUT = outputl;

}

actor FIR_lowpass {
computation = "ptolemy.domains.sdf.lib.FIR";

decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-6.98E-4, -
0.011833,0.011682,0.071283,-0.030986,~
0.226242,0.069248,0.731574,0.731574,0.069248,—0.226242,—
0.030986,0.071283,0.011682,—0.011833,—6.98E—4,0.001224};
input : INPUT = e7;
output : OUTPUT = output2;
}
actor forkl {
computation = "dif.fork";
}
}

dif Analysis_Filter Pair3 {
topology {
nodes = FIR_highpass,
FIR_lowpass,
fork2;
edges = e8 (fork2, FIR highpass),
e9 (fork2, FIR_lowpass);
}
interface {
inputs = input:fork2;
outputs = outputl:FIR_highpass,
output2:FIR_lowpass;

}
attribute _vergilsSize { = [600,400]; }
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attribute _vergilLocation { = [211,474]; }
attribute lowpass { = "gmf.lowpass.filter"; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR_highpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-7.0E-4,-
0.011344,0.011408,0.023464,-0.001747,-0.044403,-0.204294,0.647669, -
0.647669,0.204294,0.044403,0.001747,-0.023464,-0.011408,0.011344,7.0E-
4,-0.001224};
input : INPUT = e8;
output : OUTPUT = outputl;
}
actor FIR_lowpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-6.98E-4,-
0.011833,0.011682,0.071283,-0.030986, -
0.226242,0.069248,0.731574,0.731574,0.069248,-0.226242, -
0.030986,0.071283,0.011682,-0.011833,-6.98E-4,0.001224};
input : INPUT = e9;
output : OUTPUT = output2;
}
actor fork2 {
computation = "dif.fork";
}
}

dif Analysis_Filter Pair4 ({
topology {
nodes = FIR_highpass,
FIR_lowpass,
fork3;
edges = el0 (fork3, FIR highpass),
ell (fork3, FIR_lowpass);
}
interface {
inputs = input:fork3;
outputs = outputl:FIR_highpass,
output2:FIR lowpass;
}
attribute _vergilsize { = [600,400]; }
attribute _vergilLocation { = [211,474]; }
attribute lowpass { = "gmf.lowpass.filter"; }

attribute highpass { = "gmf.highpass.filter"; }
actor FIR highpass {
computation = "ptolemy.domains.sdf.lib.FIR";

decimation : PARAMETER = 2;

decimationPhase : PARAMETER = 1;

interpolation : PARAMETER = 1;

taps : PARAMETER = {0.001224,-7.0E-4,-
0.011344,0.011408,0.023464,-0.001747,-0.044403,-0.204294,0.647669, -
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0.647669,0.204294,0.044403,0.001747,—0.023464,—0.011408,0.011344,7.0E—
4,-0.001224};

input : INPUT = elO;

output : OUTPUT = outputl;

}
actor FIR_lowpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-6.98E-4,~
0.011833,0.011682,0.071283,-0.030986,—
0.226242,0.069248,0.731574,0.731574,0.069248,—0.226242,—
0.030986,0.071283,0.011682,—0.011833,-6.98E—4,0.001224};
input : INPUT = ell;
output : OUTPUT = output2;
)
actor fork3 {
computation = "dif.fork";

}
}

dif Analysis_Filter_ PairS {
topology {
nodes = FIR_highpass,
FIR lowpass,
fork4:;
edges = el2 (fork4, FIR highpass),
el3 (fork4, FIR_lowpass);

}
interface {

inputs = input:fork4;

outputs = outputl:FIR_highpass,

output2:FIR_lowpass;

)
attribute _vergilsize { = [600,400]; }
attribute _vergilLocation { = [211,474]; }
attribute lowpass { = "qmf.lowpass.filter"; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR highpass {

computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-7.0E-4,-
0.011344,0.011408,0.023464,—0.001747,—0.044403,—0.204294,0.647669,—
0.647669,0.204294,0.044403,0.001747,-0.023464,—0.011408,0.011344,7.0E—
4,-0.001224});
input : INPUT = el2;
output : OUTPUT = outputl;
}
actor FIR_ lowpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
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taps : PARBMETER = {0.001224,-6.98E-4,-

0.011833,0.011682,0.071283,-0.030986, -
0.226242,0.069248,0.731574,0.731574,0.069248,-0.226242, -
0.030986,0.071283,0.011682,-0.011833,-6.98E-4,0.001224};

}

input : INPUT = el3;
output : OUTPUT = output2;
}
actor fork4d ({
computation = "dif.fork";

}

dif Analysis_Filter Pair6é ({

0.
0.
4,

0.

topology {
nodes = FIR highpass,
FIR_lowpass,
fork5;
edges = el4 (fork5, FIR highpass),
el5 (fork5, FIR lowpass):
}
interface {
inputs = input:fork5;
outputs = outputl:FIR_highpass,
output2:FIR_lowpass;
}
attribute _vergilsize { = [600,400]; }
attribute _vergillLocation { = [211,474]; }
attribute lowpass { = "gmf.lowpass.filter"; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR_highpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-7.0E-4,-
011344,0.011408,0.023464,-0.001747,-0.044403,-0.204294,0.647669, -
647669,0.204294,0.044403,0.001747,-0.023464,-0.011408,0.011344,7.0E~
-0.001224};
input : INPUT = eld4;
output : OUTPUT = outputl;
}
actor FIR lowpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-6.98E-4, -
011833,0.011682,0.071283,-0.030986, -

0.226242,0.069248,0.731574,0.731574,0.069248,-0.226242, -

0.

030986,0.071283,0.011682,-0.011833,-6.98E-4,0.001224};
input : INPUT = el5;
output : OUTPUT = output2;
}
actor fork5 ({
computation = "dif.fork";

} .
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dif Analysis_Filter Pair7 ({
topology {
nodes = FIR_highpass,
FIR_ lowpass,
forké6:;
edges = elé (forké, FIR highpass),
el7 (fork6, FIR_lowpass);
}
interface {
inputs = input:forké;
outputs = outputl:FIR_highpass,
output2:FIR_lowpass;
}
attribute _vergilsize { = [600,4001; }
attribute _vergilLocation { = [211,474]; }
attribute lowpass { = "gmf.lowpass.filter"; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR_highpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-7.0E-4,-
0.011344,0.011408,0.023464,-0.001747,-0.044403,-0.204294,0.647669, -
0.647669,0.204294,0.044403,0.001747,-0.023464,~0.011408,0.011344,7.0E-
4,-0.001224});
input : INPUT = elé6;
output : OUTPUT = outputl;
}
actor FIR lowpass {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 2;
decimationPhase : PARAMETER = 1;
interpolation : PARAMETER = 1;
taps : PARAMETER = {0.001224,-6.98E-4,-
0.011833,0.011682,0.071283,-0.030986, -
0.226242,0.069248,0.731574,0.731574,0.069248,-0.226242, -
0.030986,0.071283,0.011682,~-0.011833,-6.98E-4,0.001224};
input : INPUT = el7;
output : OUTPUT = output2;
}
actor forké6 {
computation = "dif.fork";
}
}

dif Reconstruction Filter Pairl {
topology {
nodes = FIR_highpass R,
FIR lowpass R,
Addsubtract;
edges = el8 (FIR_highpass R, AddSubtract),
elS (FIR lowpass_R, AddSubtract);
}

interface {
inputs = inputl:FIR highpass_R,
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input2:FIR_lowpass_R;
outputs = output:AddSubtract;
}
attribute _vergilSize { = [600,400]; }
attribute _vergillocation { = [232,252]; }
attribute lowpass { = "qmf.lowpass.filter"; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR highpass_R {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2}
taps : PARAMETER = {-0.001224,-6.98E-4,0.011833,0.011682, -
0.071283,-0.030986,0.226242,0.069248,-0.731574,0.731574,-0.069248,
0.226242,0.030986,0.071283,-0.011682,-0.011833,6.98E-4,0.001224};
input : INPUT = inputl;
output : OUTPUT = el8;
}

actor FIR_lowpass_R {
computation = "ptolemy.domains.sdf.lib.FIR";

decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {0.001224,7.0E-4,-0.011344,~
0.011408,0.023464,0.001747, -
0.044403,0.204294,0.647669,0.647669,0.204294, -
0.044403,0.001747,0.023464,-0.011408,-0.011344,7.0E-4,0.001224};
input : INPUT = input2;
output : OUTPUT = el9;
}
actor AddSubtract {
computation = "ptolemy.actor.lib.AddSubtract";
plus : INPUT = el8, el9;
output : OUTPUT = output;

dif Reconstruction_Filter Pair2 {
topology {
nodes = FIR_highpass_R,
FIR lowpass_R,
Addsubtract;
edges = e20 (FIR highpass R, AddSubtract),
e2l (FIR lowpass_R, Addsubtract):;
)
interface {
inputs = inputl:FIR_highpass_R,
input2:FIR lowpass_R;
outputs = output:AddSubtract;
}
attribute _vergilsize { = [600,400]; }
attribute _vergilLocation { = [232,252}; }
attribute lowpass { = "gmf.lowpass.filter"; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR highpass R {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
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decimationPhase : PARAMETER = 0;
interpolation : PARBMETER = 2;
taps : PARAMETER = {-0.001224,-6.98E-4,0.011833,0.011682, -
0.071283,—0.030986,0.226242,0.069248,—0.731574,0.731574,—0.069248,—
0.226242,0.030986,0.071283,—0.011682,—0.011833,6.98E—4,0.001224};
input : INPUT = inputl;
output : OUTPUT = e20;
}
actor FIR_lowpass_R {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {0.001224,7.0E-4,-0.011344,-
0.011408,0.023464,0.001747, -
0.044403,0.204294,0.647669,0.647669,0.204294, -
0.044403,0.001747,0.023464,—0.011408,—0.011344,7.0E—4,0.001224};
input : INPUT = input2;
output : OUTPUT = e2l;
1
actor AddsSubtract {
computation = "ptolemy.actor.lib.AddSubtract";
plus : INPUT = e20, e2l;
output : OUTPUT = output;

dif Reconstruction Filter Pair3 {
topology { '
nodes = FIR_highpass_R,
FIR_lowpass_R,
AddSubtract;
edges = e22 (FIR_highpass_R, AddSubtract),
e23 (FIR_lowpass_R, Addsubtract);
}
interface {
inputs = inputl:FIR highpass_R,
input2:FIR_lowpass_R;
outputs = output:AddSubtract;

}
attribute _yergilsize { = [600,400]; }

attribute _vergilLocation { = [232,252]; }
attribute lowpass { = "gmf.lowpass.filter"; 1}
attribute highpass { = "gmf.highpass.filter"; }

actor FIR _highpass R {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARABMETER = 2;
taps : PARAMETER = {-0.001224,-6.98E-4,0.011833,0.011682, -
0.071283,-0.030986,0.226242,0.069248,-0.731574,0.731574,-0.069248, -
0.226242,0.030986,0.071283,-0.011682,-0.011833,6.98E~-4,0.001224};
input : INPUT = inputl;
output : OUTPUT = e22;
}
actor FIR_lowpass_R {
computation = "ptolemy.domains.sdf.lib.FIR";
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decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {0.001224,7.0E-4,-0.011344, -
0.011408,0.023464,0.001747, -
0.044403,0.204294,0.647669,0.647669,0.204294, -
0.044403,0.001747,0.023464,-0.011408,-0.011344,7.0E-4,0.001224};
input : INPUT = input2;
output : OUTPUT = e23;
}
actor Addsubtract {
computation = "ptolemy.actor.lib.Addsubtract";
plus : INPUT = e22, e23;
output : OUTPUT = output;

dif Reconstruction Filter Paird ({
topology {
nodes = FIR _highpass_R,
FIR_ lowpass_R,
Addsubtract;
edges = e24 (FIR_highpass_R, AddSubtract),
e25 (FIR lowpass_R, AddSubtract);

}
interface {
inputs = inputl:FIR_highpass_ R,
input2:FIR_lowpass_R;
outputs = output:AddSubtract;
}
attribute _vergilsize { = [600,400]; }
attribute _vergilLocation { = [232,252]; }
attribute lowpass { = "gmf.lowpass.filter"; }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR highpass R {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {-0.001224,-6.98E-4,0.011833,0.011682,~-
0.071283,-0.030986,0.226242,0.069248,-0.731574,0.731574,~0.069248, -
0.226242,0.030986,0.071283,~-0.011682,-0.011833,6.98E-4,0.001224};
input : INPUT = inputl;
output : OUTPUT = e24;
}
actor FIR_lowpass_R ({
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {0.001224,7.0E-4,-0.011344, -
0.011408,0.023464,0.001747, -
0.044403,0.204294,0.647669,0.647669,0.204294, -
0.044403,0.001747,0.023464,-0.011408,-0.011344,7.0E-4,0.001224};
input : INPUT = input2;
output : OUTPUT = e25;

STTR 03-003 Appendix B B29



actor Addsubtract {
computation = "ptolemy.actor.lib.AddSubtract";
plus : INPUT = e24, e25;
output : OUTPUT = output;

dif Reconstruction Filter PairS {
topology {
nodes = FIR_highpass_R,
FIR_lowpass_R,
Addsubtract;
edges = e26 (FIR_highpass_R, Addsubtract),
e27 (FIR_lowpass_R, AddSubtract);

}
interface {

inputs = inputl:FIR_highpass_R,

input2:FIR_lowpass_R;

outputs = output:AddSubtract;
}
attribute _vergilsSize { = [600,400]; }
attribute _vergilLocation { = [232,252]; }
attribute lowpass { = "gqmf.lowpass.filter"; }

attribute highpass { = "gmf.highpass.filter"; }
actor FIR highpass_R {
computation = "ptolemy.domains.sdf.lib.FIR";

decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {-0.001224,-6.98E-4,0.011833,0.011682, -
0.071283,—0.030986,0.226242,0.069248,—0.731574,0.731574,-0.069248,~
0.226242,0.030986,0.071283,—0.011682,—0.011833,6.98E—4,0.001224};
input : INPUT = inputl;
output : OUTPUT = e26;
}
actor FIR_lowpass_R {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {0.001224,7.0E-4,-0.011344,~
0.011408,0.023464,0.001747, -
0.044403,0.204294,0.647669,0.647669,0.204294, -
0.044403,0.001747,0.023464,-0.011408,-0.011344,7.0E-4,0.001224};
input : INPUT = input2;
output : OUTPUT = e27;
}

actor AddSubtract {
computation = "ptolemy.actor.lib.AddSubtract™;

plus : INPUT = e26, e27;
output : OUTPUT = output;

}

dif Reconstruction Filter Pair6 {

topology {
nodes = FIR_highpass R,
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FIR lowpass_R,
Addsubtract;

edges = e28 (FIR_highpass_R, AddSubtract),
e29 (FIR_ lowpass_R, AddsSubtract);

}

interface {
inputs = inputl:FIR highpass_R,
input2:FIR_lowpass_R;
outputs = output :AddSubtract;
}
attribute *vergilsize { = [600,400]; }
attribute _vergilLocation { = [232,252); }
attribute lowpass { = “qu.lowpass.filter"} }
attribute highpass { = "gmf.highpass.filter"; }
actor FIR highpass_R {
computation = “ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {—0.001224,—6.98E—4,0.011833,0.011682,—
0.071283,—0.030986,0.226242,0.069248,—0.731574,0.731574,—0.069248,—
0.226242,0.030986,0.071283,—0.011682,—0.011833,6.98E—4,0.001224};
input : INPUT = inputl;
output : OUTPUT = e28;
}
actor FIR_lowpass_R {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {0.001224,7.0E-4,-0.011344, -
0.011408,0.023464,0.001747,-
0.044403,0.204294,0.647669,0.647669,0.204294,—
0.044403,0.001747,0.023464,—0.011408,—0.011344,7.0E—4,0.001224};
input : INPUT = input2;
output : OUTPUT = e29;
}
actor AddsSubtract {
computation = "ptolemy.actor.lib.AddSubtract";
plus : INPUT = e28, e29;
output : OUTPUT = output;

}

dif Reconstruction_Filter Pair7 {
topology {
nodes = FIR_highpass_R,
FIR_ lowpass_R,
Addsubtract;
edges = e30 (FIR_highpass R, Addsubtract),
e31 (FIR lowpass_R, Addsubtract);

}
interface {
inputs = inputl:FIR_highpass_R,
input2:FIR_lowpass_R;
outputs = output:Addsubtract;
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attribute ~_vergilsize { = [600,400); 1}
attribute _vergilLocation { = [232,252]; }
attribute lowpass { = "gmf.lowpass.filter"; }
attribute highpass { = "gqmf.highpass.filter"; }
actor FIR_highpass_R {
computation = "ptolemy.domains.sdf.lib.FIR";
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {—0.001224,—6.98E—4,0.011833,0.011682,-

0.071283,—0.030986,0.226242,0.069248,—0.731574,0.731574,—0.069248,—

0.226242,0.030986,0.071283,—0.011682,—0.011833,6.98E—4,0.001224};
input : INPUT = inputl;
output : OUTPUT = e30;
}
actor FIR lowpass_R {
computation = “ptolemy.domains.sdf.lib.FIR“;
decimation : PARAMETER = 1;
decimationPhase : PARAMETER = 0;
interpolation : PARAMETER = 2;
taps : PARAMETER = {0.001224,7.0E-4,-0.011344, -
0.011408,0.023464,0.001747,~
0.044403,0.204294,0.647669,0.647669,0.204294,—
0.044403,0.001747,0.023464,—0.011408,—0.011344,7.0E—4,0.001224};
input : INPUT = input2;
output : OUTPUT = e3l;
}
actor AddSubtract {
computation = "ptolemy.actor.lib.AddSubtract";
plus : INPUT = e30, e3l;
output : OUTPUT = output;

dif PreScaler {

topology {
nodes = Scale,
Limiter,
AddSubtract,
Const;

edges = e32 (Scale, Limiter),
e33 (Limiter, Addsubtract),
e34 (const, AddSubtract);
}
interface {
inputs = input:Scale;
outputs = output:Addsubtract;
}
attribute _Vergilsize { = [600,400]; }
attribute _vergilLocation { = [181,466]; }
attribute gain { = 100:; }
attribute offset { = 128; }

actor Scale {
computation = "ptolemy.actor.lib.Scale";

factor : PARAMETER = 100;
scaleOnLeft : PARAMETER = true;
input : INPUT = input;
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output : OUTPUT = e32;
}
actor Limiter ({
computation = "ptolemy.actor.lib.Limiter";
bottom : PARAMETER = -128.0;
top : PARAMETER = 127.0;
input : INPUT = e32;
output : OUTPUT = e33;
1
actor AddSubtract {
computation = "ptolemy.actor.lib.AddSubtract“;
plus : INPUT = e33, e34;
output : OUTPUT = output;
}
actor Const ({
computation = "ptolemy.actor.lib.Const";
value : PARAMETER = 128;
output : OUTPUT = e34;

}

dif FilterBank {
topology {
nodes = Truncated_Sinewave,
SequencePlotter,
Bnalysis Filter Pairl,
Bnalysis_Filter_ Pairz,
Analysis_Filter Pair3,
Analysis_Filter Pair4,
Analysis_Filter_ Pairs3,
Analysis Filter Pair6,
Analysis_Filter_Pair7,
Reconstruction Filter Pairl,
S$Repeat{2,1}$,
Reconstruction_Filter Pair2,
Reconstruction Filter Pair3,
SRepeat {4,113,
$Repeat {8,113,
$Repeat{16,1}83,
S$Repeat{32,1}$,
Reconstruction Filter Pair4,
Reconstruction_Filter Pairs,
Reconstruction_Filter_PairG,
Reconstruction Filter Pair7,
SRepeatl1{64,1}$,
$Repeat2{64,1}$,
Commutator,
PreScaler,
FileWriter,
${base*63/2}$,
${base*31/2}$,
${base*15/2}$,
${base*7/2}$,
S${base*3/2}$,
${81%,
${base*63*2 + basel$,
${base*63/2 + 1}8%,
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${base*31/2 + 1}8,
${base*15/2 + 1}§,
S{base*7/2 + 1}8,
S{base*3/2 + 1}83,

${base*63/2}3),
Analysis_Filter Pair2),
${base*31/2}8%),
Analysis Filter Pair3),
${base*15/2}8%),
Analysis_Filter_ Paird),
${base*7/2}8),
Analysis_ Filter Pair3),
${base*3/2}3),
Bnalysis_Filter Paireé),
${81%),
Analysis_Filter_Pair7),
forks8),

fork9),

(Reconstruction_Filter_Pairl, SequencePlotter),

${91s,
fork7,
forks,
fork9,
forkloO,
forkll,
forkl2,
forkl3,
forkld,
forkl5;
edges = e35 (Truncated_Sinewave, fork?),
e36 (fork7, Analysis_Filter_Pairl),
e37 (fork7, ${base*63*2 + base}$),
e38 (Analysis_Filter_ Pairl,
e39 (Analysis_Filter_ Pairl,
e40 (Analysis_Filter Pair2,
edl (Analysis_Filter_PairZ,
ed? (Analysis_Filter_PairB,
e43 (Rnalysis_Filter_ Pair3,
e44 (Rnalysis_Filter_ Paird,
e45 (Rnalysis_Filter_ Pair4,
e46 (Analysis Filter_Pair3,
e47 (Rnalysis_Filter_ Pair3,
e48 (Bnalysis_Filter_Pair6,
el (Analysis_Filter_PairG,
e50 (BAnalysis_Filter_ Pair7,
e51 (forks, Reconstruction_Filter_Pair7),
e52 (fork8, S$Repeatl{64,1}8),
e53 (Analysis_Filter_Pair?,
e54 (forkd, Reconstruction Filter Pair7),
e55 (fork9, SRepeat2{64,1}8),
e56
e57 (SRepeat{2,1}$, Commutator),
e58 (Reconstruction Filter_ Pairz,

Reconstruction Filter_ Pairl),

e59 (Reconstruction_Filter_Pair3,
Reconstruction Filter_ Pair2),
($Repeat{4,1}$, Commutator),
(SRepeat{8,1}3, Commutator),
($Repeat{16,1}$, Commutator),
(SRepeat{32,1}$, Commutator),
(Reconstruction Filter Pair4,
Reconstruction_Filter Pair3),

e65 (Reconstruction Filter_ Pair3,
Reconstruction_Filter_ Paird),

e66 (Reconstruction_Filte:_PairG,
Reconstruction_ Filter Pair3),

e67 (Reconstruction_Filter_ Pair7,

Reconstruction_Filter Pair6),

e60
ebl
e62
e6é3
e64

e68 (SRepeatl{64,1}$3, Commutator),
e69 ($Repeat2{64,1}Ss, Commutator),
e70 (Commutator, PreScaler),
e7l (PreScaler, FileWriter),
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e72 (${base*63/2}$, forkl0),
e73 (forkl0, Commutator),
e74 (forkl0, ${base*63/2 + 1}8),
e75 (${base*31/2}$, forkll),
e76 (forkll, S$Repeat{2,1}$),
e77 (forkll, ${base*31/2 + 1}3%),
e78 (${base*15/2}$, forkl2),
e79 (forkl2, S$Repeat{4,1}$),
e80 (forkl2, ${base*15/2 + 1}8),
e81l (${base*7/2}$, forkl3),
e82 (forkl3, SRepeat{8,11}$%),
e83 (forkl3, ${base*7/2 + 1}8%),
e84 (${base*3/2}$, forkld),
e85 (forkl4, SRepeat{l6,1}3),
e86 (forkld, S${base*3/2 + 1}$),
e87 (${8}$, forkl5),
e88 (forkl5, $Repeat{32,1}8),
e89 (forkl5, ${9}%),
e90 (${base*63*2 + basel$, SequencePlotter),
e91 (${base*63/2 + 1}85, Reconstruction_Filter Pairl),
e92 (${base*31/2 + 1}$5, Reconstruction_Filter_Pair2),
e93 (${base*15/2 + 1}8, Reconstruction_ Filter Pair3),
e94 (${base*7/2 + 1}§, Reconstruction Filter Paird),
€95 (${base*3/2 + 118, Reconstruction Filter Pair3),
€96 (${9}$, Reconstruction Filter Pair6);
}
refinement {
Truncated Sinewave = Truncated_Sinewave;
output : e35;
}
refinement {
Bnalysis_Filter_ Pairl
input : e36;
outputl : e38;
output2 : e39;

]

Analysis_Filter Pairl;

}

refinement {
Analysis Filter_ Pair2
input @ e39;
outputl : ed0;
output2 : edl;

Analysis_Filter Pair2;

}

refinement {
Analysis_Filter Pair3
input : edl;
outputl : ed2;
output2 : e43;

Analysis_Filter_ Pair3;

}

refinement {
Analysis_Filter Pair4 = Analysis_Filter Paird;
input : e43;
outputl : edd;
output2 : ed5;

}

refinement {
Bnalysis_Filter_ Pair5
input : e45;

1l

Analysis_Filter_ Paird;

STTR 03-003 Appendix B B35



outputl : edé6;
output2 : ed7;

}

refinement {
Analysis Filter Pair6
input : ed7; -
outputl : e48;
output2 : ed9;

]

}

refinement {
Analysis_Filter Pair7
input : ed49;
outputl e50;
output2 e53;

}

refinement {
Reconstruction_ Filter_ Pairl
inputl : e91;
input2 : e58;
output : e56;

}

refinement {
Reconstruction Filter Pair2
inputl : e92;
input2 : e59;
output : e58;

}

refinement {
Reconstruction_ Filter_ Pair3
inputl : e93;
input2 : e64;
output : e59;

}

refinement {
Reconstruction Filter_ Paird
inputl : e3%4;
input2 : e6é5;
output : e64;

}

refinement {
Reconstruction Filter Paird5
inputl : e95;
input2 : e66;
output : eé5;

}

refinement {
Reconstruction_Filter Pairé6
inputl : eS%6;
input2 : e67;
output : eé66;

}

refinement {
Reconstruction Filter_ Pair7
inputl : e51;
input2 e54;
output e67;
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refinement {
PreScaler = PreScaler;
input : e70;
output : e71;
}
attribute _vergilsSize { = [1073,879]; }
attribute _yergilLocation { = [-4,12]; }
attribute base { = 17; }
attribute nolIterations { = 1600; }
attribute _windowProperties { = "{bounds = {3, 10, 1288, 988},
maximized = false}"; }
attribute _vergilZoomFactor { = 1.0; }
attribute _vergilCenter { = {536.5,439.5}; }
actor Truncated Sinewave {
computation = "ptolemy.actor.TypedCompositeActor™;
}
actor SequencePlotter {
computation = "ptolemy.actor.1ib.gui.SequencePlotter":
fillOnWrapup : PARAMETER = true;
_windowProperties . PARAMETER = "{bounds = {386, 332, 508,
359}}1";
_plotSize : PARAMETER = [500,300];
startingDataset : PARAMETER = 0;
xInit : PARAMETER = 0.0;
xUnit : PARAMETER = 1.0;
input : INPUT = e56, e90;
}
actor Analysis_Filter Pairl ({
computation = "ptolemy.actor.TypedCompositeActor";
}
actor Analysis Filter Pair2 {
computation = "ptolemy.actor.TypedCompositeActor";
}
actor Analysis_Filter_ Pair3 {
computation = "ptolemy.actor.TypedCompositeActor";
}
actor Rnalysis_Filter Paird {
computation = "ptolemy.actor.TypedCompositeActor";
}
actor Analysis_Filter Pair5 {
computation = "ptolemy.actor.TypedCompositeActor";
}

actor Rnalysis_Filter_Pair6 ({
computation = "ptolemy.actor.TypedCompositeActor";

}
actor Analysis_Filter Pair7 {
computation = "ptolemy.actor.TypedCompositeActor";
}
actor Reconstruction Filter Pairl ({
computation = "ptolemy.actor.TypedCompositeActor";
}
actor $Repeat{2,1}$ {
computation = "ptolemy.domains.sdf.lib.Repeat";
numberOfTimes : PARAMETER = 2;
blockSize : PARAMETER = 1;
input : INPUT = e76;
output : OUTPUT = e37;
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}

actor Reconstruction Filter Pair2 {
computation = "ptolemy.actor.TypedCompositeActor";
}
actor Reconstruction Filter Pair3 {
computation = "ptolemy.actor.TypedCompositeActor";
}
actor $Repeat{4,1}$ {
computation = "ptolemy.domains.sdf.lib.Repeat";
numberOfTimes : PARAMETER = 4;
blockSize : PARAMETER = 1;
input : INPUT = e79;
output : OUTPUT = e60;
}
actor S$Repeat{8,1}$ {
computation = "ptolemy.domains.sdf.lib.Repeat";
numberOfTimes : PARAMETER = §;
blockSize : PARAMETER = 1;
input : INPUT = e82;
output : OUTPUT = e6l;
}
actor SRepeat{16,1}$ {
computation = "ptolemy.domains.sdf.lib.Repeat";
numberOfTimes : PARAMETER = 16;
blockSize : PARAMETER = 1;
input : INPUT = e85;
output : OUTPUT = e62;
}
actor SRepeat{32,1}$ {
computation = "ptolemy.domains.sdf.lib.Repeat";
numberOfTimes : PARAMETER = 32;
blockSize : PARAMETER = 1;
input : INPUT = e88;
output : OUTPUT = e63;
}
actor Reconstruction_Filter Pair4 {
computation = "ptolemy.actor.TypedCompositeActor™;
}
actor Reconstruction Filter Pair5 {
computation = "ptolemy.actor.TypedCompositeActor";
}
actor Reconstruction Filter Pair6 {
computation = "ptolemy.actor.TypedCompositeActor";
}
actor Reconstruction Filter Pair7 ({
computation = "ptolemy.actor.TypedCompositeActor";
}
actor SRepeatl{64,1}$ {
computation = "ptolemy.domains.sdf.lib.Repeat";
numberOfTimes : PARAMETER = 64;
blockSize : PARAMETER = 1;
input : INPUT = e52;
output : OUTPUT = e68;
}
actor $Repeat2{64,1}$ {
computation = "ptolemy.domains.sdf.lib.Repeat";
numberOfTimes : PARAMETER = 64;
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blockSize : PARAMETER = 1;
input : INPUT = e55;
output : OUTPUT = e69;

}

actor Commutator {

computation = "ptolemy.actor.lib.Commutator";
input : INPUT = e57, e60, e6l, e6Zz, e63, e68, e69, e73;

output : OUTPUT = e70;
}
actor PreScaler ({
computation = "ptolemy.actor.TypedCompositeActor™;
}
actor FileWriter {
computation = "ptolemy.actor.lib.FileWriter";
filename : PARAMETER = "c:\\testout.4";
input : INPUT = e71;
}
actor ${base*63/21$ {
computation = "mapss.applications.lib.SampleDelay";
initialOutputs : PARAMETER = {0};
repetitionCount : PARAMETER = 535;
repetitionvValue : PARAMETER = 0;
input : INPUT = e38;
output : OUTPUT = e72;
}
actor ${base*31/2}$ {
computation = "mapss.applications.lib.SampleDelay";
initialoutputs : PARAMETER = {0};
repetitionCount : PARAMETER = 263;
repetitionvalue : PARAMETER = 0;
input : INPUT = e40;
output : OUTPUT = e75;
}
actor ${base*15/2}$ {
computation = "mapss.applications.lib.SampleDelay";
initialOutputs : PARAMETER = {0}
repetitionCount : PARAMETER = 127;
repetitionvValue : PARAMETER = 0;
input : INPUT = e42;
output : OUTPUT = e78;
}
actor ${base*7/2}$5 {
computation = "mapss.applications.lib.SampleDelay";
initialoutputs : PARAMETER = {0}; :
repetitionCount : PARAMETER = 59;
repetitionvalue : PARAMETER = 0;
input : INPUT = ed4;
output : OUTPUT = e81;
}
actor S${base*3/2}1$ {
computation = "mapss.applications.lib.SampleDelay";
initialoutputs : PARAMETER = {0};
repetitionCount : PARAMETER 25;
repetitionvValue : PARAMETER 0;
input : INPUT = e46;
output : OUTPUT = e84;
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actor ${8}$ {

computation = "mapss.applications.lib.SampleDelay";
initialOutputs : PARAMETER = {0};
repetitionCount PARAMETER = 8;

oe a0

repetitionvValue PARARMETER = 0;
input : INPUT = e48;
output : OUTPUT = e87;
}
actor ${base*63*2 + base}$ {
computation = "mapss.applications.lib.SampleDelay";
initialOutputs : PARAMETER = {0};
repetitionCount : PARAMETER = 2159;
repetitionvValue : PARAMETER = 0;
input : INPUT = e37;
output : OUTPUT = e90;
}
actor ${base*63/2 + 1}$ {
computation = "mapss.applications.lib.SampleDelay";
initialOutputs : PARAMETER = {0};
repetitionCount : PARAMETER 536;
repetitionvValue : PARAMETER 0;
input : INPUT = e74;
output : OUTPUT = e91;

}
actor ${base*31/2 + 1}$ {
computation = "mapss.applications.lib.SampleDelay";
initialOutputs : PARAMETER = {0};
repetitionCount : PARAMETER = 264;
repetitionValue : PARAMETER = 0;
input : INPUT = e77;
output : OUTPUT = e92;
}

actor ${base*15/2 + 1}$ {
computation = "mapss.applications.lib.SampleDelay";

initialOutputs : PARAMETER = {0};
repetitionCount : PARAMETER = 128;
repetitionValue : PARAMETER = 0;
input : INPUT = e80;
output : OUTPUT = e93;

}

actor ${base*7/2 + 1}$ {
computation = "mapss.applications.lib.SampleDelay";

initialoutputs : PARAMETER = {0};

repetitionCount : PARAMETER = 60;
repetitionvalue : PARAMETER = 0;
input : INPUT = e83;
output : OUTPUT = e94;
}
actor ${base*3/2 + 1}$ {
computation = "mapss.applications.lib.SampleDelay";
initialOutputs : PARAMETER = {0};

repetitionCount : PARAMETER = 26;
repetitionvValue : PARAMETER = 0;
input : INPUT = e86;

output : OUTPUT = e95;

}
actor ${9}$ {
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computation = "mapss.applications.lib.SampleDelay";
initialOutputs : PARAMETER = {0}

repetitionCount : PARAMETER 9;

repetitionValue : PARAMETER 0;

input : INPUT = e89;

output : OUTPUT = e96;

}
actor fork7 {

computation = "dif.fork";
}
actor fork8 {

computation = "dif.fork";
}
actor fork9 ({

computation = "dif.fork";
}
actor forklO {

computation = "dif.fork";
}
actor forkll {

computation = "dif.fork";
}
actor forkl2 {

computation = "dif.fork™;
}
actor forkl3 {

computation = "dif.fork";
}
actor forkléd {

computation = "dif.fork";

}
actor forkl5 {

computation = "dif.fork™;
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Multi Rate Filter SPGN (Top Level Graph)

$GRAPH (FilterBank )

$GIP ( _vergilCenter : FLOAT ARRAY (2)
INITIALIZE TO {536.5,439.5}
)

$GIP (_vergilLocation : INT ARRAY (2)
INITIALIZE TO {-4,12}
)

$GIP (_vergilsSize : INT ARRAY (2)
INITIALIZE TO {1073,879}
)

$GIP (_vergilZoomFactor : FLORT
INITIALIZE TO 1.0
)

$GIP (_windowProperties : <UNKNOWN>
INITIALIZE TO {bounds = {3, 10, 1288, 988}, maximized = false}
)

$GIP (base : INT
INITIALIZE TO 17
)

$GIP (nolterations : INT
INITIALIZE TO 1600

)

$QUEUE (e35)
$QUEUE (e36)
$QUEUE (e37)
$QUEUE (e38)
$QUEUE (e39)
$QUEUE (e40)
$QUEUE (e4l)
SQUEUE (ed2)
$QUEUE (e43)
$QUEUE (ed4)
$QUEUE (e45)
$QUEUE (e46)
$QUEUE (ed7)
$QUEUE (ed48)
$QUEUE (e49)
$QUEUE (e50)
$QUEUE (eb51)
$QUEUE (e52)
$QUEUE (e53)
$QUEUE (eb54)
$QUEUE (e55)
$QUEUE (e56)
$QUEUE (e57)
$QUEUE (e58)
$QUEUE (eb59)
$QUEUE (e60)
$QUEUE (e61l)
$QUEUE (e62)
$QUEUE (e63)
$QUEUE (e64)
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$QUEUE (e65)
$QUEUE (e66)
SQUEUE (e67)
$QUEUE (e68)
$QUEUE (e69)
$QUEUE (e70)
$QUEUE (e71)

$QUEUE (e72)
$QUEUE (e73)
$QUEUE (e74)
$QUEUE (e75)
$QUEUE (e76)
$QUEUE (e77)

$QUEUE (e78)
$QUEUE (e79)
$QUEUE (e80)
$QUEUE (e81)
$QUEUE (e82)
$QUEUE (e83)
$QUEUE (e84)
$QUEUE (e85)
$QUEUE (e86)

$QUEUE (e87)
$QUEUE (e88)
$QUEUE (e89)

$QUEUE (e90)
$QUEUE (e91)
$QUEUE (e92)
$QUEUE (e93)
$QUEUE (e94)
SQUEUE (e95)
$QUEUE (e96)

$SUBGRAPH (Truncated_Sinewave
GRAPH = Truncated_Sinewave
GIP =
INPUTQ =
OUTPUTQ =

output = e35

)

$SUBGRAPH (Rnalysis Filter_Pairl
GRAPH = Analysis_Filter_Pairl
GIP =

INPUTQ =
input = e36
OUTPUTQ =
outputl = e38
output2 = e39

)

$SUBGRAPH (BAnalysis_Filter Pair2
GRAPH = Analysis_Filter Pair2
GIP =

INPUTQ =
input = e39
OUTPUTQ =
outputl = e40
output2 = e4l
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)

$SUBGRAPH (Analysis_Filter_ Pair3
GRAPH = Analysis Filter_ Pair3

GIP =
INPUTQ =
input = edl
OUTPUTQ =
outputl = ed2
output2 = e43
)

$SUBGRAPH (Rnalysis Filter Pair4
GRAPH = Analysis_Filter_ Pair4

GIP =

INPUTQ =
input = e43

OUTPUTQ =
outputl = edd
output2 = e45

)

$SUBGRAPH (Analysis_ Filter_Pair5
GRAPH = Analysis_Filter Pair5

GIP =

INPUTQ =
input = e45

OUTPUTQ =
outputl = e46
output2 = ed7

)

$SUBGRAPH (Analysis_Filter Pairé6
GRAPH = Analysis_Filter Pairé

GIP =
INPUTQ =
input = ed7
OUTPUTQ =
outputl = e48

output2 = e49
)

$SUBGRAPH (Analysis_Filter Pair7
GRAPH = Analysis Filter_ Pair7

GIP =
INPUTQ =
input = e49
OUTPUTQ =
outputl = e50

output2 = e53
)

$SUBGRAPH (Reconstruction Filter Pairl
GRAPH = Reconstruction Filter Pairl

GIP =

INPUTQ =
inputl = e91
input2 = e58

OUTPUTQ =
output = e56

)

$SUBGRAPH (Reconstruction Filter Pair2
GRAPH = Reconstruction Filter Pair2
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GIP =
INPUTQ =
inputl = e92
input2 = e59
OUTPUTQ =
output = e58
)
$SUBGRAPH (Reconstruction_Filter_Pair3
GRAPH = Reconstruction_Filter Pair3

GIP =
INPUTQ =
inputl = e93
input2 = e64
OUTPUTQ =

output = e59
)
$SUBGRAPH (Reconstruction Filter Pair4
GRAPH = Reconstruction_Filter Pair4d

GIP =

INPUTQ =
inputl = e94
input2 = e65

OUTPUTQ =
output = e64

)
$SUBGRAPH (Reconstruction Filter Pair5

GRAPH = Reconstruction Filter Pair5

GIP =

INPUTQ =
inputl = €95
input2 = e66

OUTPUTQ =
output = e65

)
$SUBGRAPH (Reconstruction Filter Pairé

GRAPH = Reconstruction Filter Pair6

GIP =

INPUTQ =
inputl = e9%6
input2 = eb67

OUTPUTQ =
output = e66

)
$SUBGRAPH (Reconstruction_Filter Pair7

GRAPH = Reconstruction_Filter Pair7

GIP =

INPUTQ =
inputl = e51
input2 = eb54

OUTPUTQ =
output = e67

)

%$SUBGRAPH (PreScaler
GRAPH = PreScaler
GIP =
INPUTQ =

input = e70
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OUTPUTQ =
output = e7l

)
$ENDGRAPH
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Analysis_Filter_Pair Subgraph SPGN

$GRAPH (Rnalysis_Filter_ Pairl
INPUTQ = input
OQUTPUTQ =
outputl
output2
)

$GIP (_vergilLocation : INT ARRAY(2)
INITIALIZE TO {211,474}

)
$GIP (_vergilsize : INT ARRAY (2)

INITIALIZE TO {600,400}
)

$GIP (highpass : <UNKNOWN>
INITIALIZE TO gmf.highpass.filter
)

$GIP (lowpass : <UNKNOWN>
INITIALIZE TO gmf.lowpass.filter
)

$QUEUE (ed)
$QUEUE (e5)

$NODE (FIR_highpass
PRIMITIVE = ptolemy.domains.sdf.lib.FIR
PRIM_IN =
PRIM OUT =
decimation = 2
decimationPhase = 1
interpolation = 1
taps = {0.001224,—7.0E-4,-0.011344,0.011408,0.023464,—0.001747,—
0.044403,-0.204294,0.647669,—0.647669,0.204294,0.044403,0.001747,-
0.023464,—0.011408,0.011344,7.0E—4,—0.001224}
input = e4
output = outputl
)
$NODE (FIR_lowpass
PRIMITIVE = ptolemy.domains.sdf.lib.FIR
PRIM IN =
PRIM OUT =
decimation = 2
decimationPhase = 1
interpolation = 1
taps = {0.001224,—6.98E—4,—0.011833,0.011682,0.071283,—0.030986,-
0.226242,0.069248,0.731574,0.731574,0.069248,-0.226242,— :
0.030986,0.071283,0.011682,—0.011833,—6.98E—4,0.001224}
input = e5
output = output2
)
$NODE (forkO
PRIMITIVE = ptolemy.actor.TypedIORelation
PRIM_IN =
PRIM OUT =
)
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$ENDGRAPH
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PreScaler Subgraph SPGN

$GRAPH (PreScaler
INPUTQ = input
OUTPUTQ = output
)

$GIP (_vergilLocation : INT ARRAY (2)
INITIALIZE TO {181,466}
)
$GIP ( vergilSize : INT ARRAY(2)
INITIALIZE TO ({600,400}
)
$GIP (gain : INT
INITIALIZE TO 100
)
%GIP (offset : INT
INITIALIZE TO 128

)

$QUEUE (e32)
$QUEUE (e33)
$QUEUE (e34)

$NODE (Scale
PRIMITIVE = ptolemy.actor.lib.Scale
PRIM IN =
PRIM_OUT =
factor = 100
scaleOnLeft = true
input = input
output = e32
)
$NODE (Limiter
PRIMITIVE = ptolemy.actor.lib.Limiter

PRIM_IN =

PRIM_OUT =
bottom = -128.0
top = 127.0
input = e32

output = e33
)
$NODE (AddSubtract
PRIMITIVE = ptolemy.actor.lib.AddSubtract
PRIM IN =
PRIM OUT =
output = output

)
$NODE (Const
PRIMITIVE
PRIM_IN =
PRIM_OUT =
value = 128
output = e34

ptolemy.actor.lib.Const
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$ENDGRAPH
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Reconstruction_Filter_Pair Subgraph SPGN

$GRAPH (Reconstruction Filter Pairl
INPUTQ =
inputl
input2
OUTPUTQ = output
)

$GIP (_vergilLocation : INT ARRAY (2)
INITIALIZE TO {232,252}

)
$GIP (_vergilsize : INT ARRAY (2)

INITIALIZE TO {600,400}
)

$GIP (highpass : <UNKNOWN>
INITIALIZE TO gmf.highpass.filter
)

$GIP (lowpass : <UNKNOWN>
INITIALIZE TO gmf.lowpass.filter

)

$QUEUE (el8)
$QUEUE (el9)

$NODE (FIR_highpass_R
PRIMITIVE = ptolemy.domains.sdf.lib.FIR
PRIM IN =
PRIM OUT =
decimation = 1
decimationPhase = 0
interpolation = 2
taps = {—0.001224,—6.98E-4,0.011833,0.011682,—0.071283,—
0.030986,0.226242,0.069248,—0.731574,0.731574,—0.069248,-
0.226242,0.030986,0.071283,-0.011682,—0.011833,6.98E—4,0.001224}
input = inputl
output = el8
)
$NODE (FIR_lowpass_R
PRIMITIVE = ptolemy.domains.sdf.lib.FIR
PRIM_IN =
PRIM_OUT =
decimation = 1
decimationPhase = 0
interpolation = 2
taps = {0.001224,7.0E-4,—0.011344,—0.011408,0.023464,0.001747,—
0.044403,0.204294,0.647669,0.647669,0.204294, -
0.044403,0.001747,0.023464,—0.011408,-0.011344,7.0E-4,0.001224}
input = input2
output = el9
)
$NODE (AddSubtract
PRIMITIVE = ptolemy.actor.lib.AddSubtract
PRIM IN =
PRIM OUT =
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output = output
)
$ENDGRAPH
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Truncated Sinewave Subgraph SPGN

$GRAPH (Truncated_ Sinewave
OUTPUTQ = output
)

$GIP (_vergilLocation : INT ARRAY (2)
INITIALIZE TO {232,252}
)

$GIP (_vergilSize : INT ARRAY (2)
INITIALIZE TO {600,400}
)

$GIP (center : INT
INITIALIZE TO 50
)

$GIP (frequency : FLOAT
INITIALIZE TO 0.6283185307179586
)

$GIP (lengthOfSineBurst : INT
INITIALIZE TO 50
)

$QUEUE (e0)
$QUEUE (el)
$QUEUE (e2)

$QUEUE (e3)

$NODE (Ramp
PRIMITIVE = ptolemy.actor.lib.Ramp
PRIM IN =
PRIM OUT =
firingCountLimit = 0
init = -79.57747154594767
step = 0.6283185307179586
output = e0
)
$NODE (Pulse

PRIMITIVE = ptolemy.actor.lib.Pulse
PRIM_IN =
PRIM OUT =

firingCountLimit = 0

indexes =

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26
,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,5
0}

values =
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}

repeat = false

output = el

)

$NODE (TrigFunction
PRIMITIVE = ptolemy.actor.lib.TrigFunction

PRIM IN =
PRIM_OUT =
function = cos
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input = e0
output = e2
)
$NODE (MultiplyDivide
PRIMITIVE = ptolemy.actor.lib.MultiplyDivide
PRIM_IN =
PRIM_OUT =
output = output
)

$NODE (_center 2
PRIMITIVE = mapss.applications.lib.SampleDelay

PRIM_IN =

PRIM OUT =
initialoutputs = {0}
repetitionCount = 25
repetitionvalue = 0

input = el
output = e3
)
$ENDGRAPH
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The DIF Specification of the Ported SAR in Ptolemy I

dif IFFT_SUBGRAPH {
topology {

}

nodes = IFFT,
Scale,
SequenceToArray,
ArrayExtract,
ArrayToSequence;
edges = el (IFFT, Scale),
e2 (Scale, sequenceToArray),
e3 (SequenceToArray, ArrayExtract),
ed4 (ArrayExtract, ArrayToSequence) ;

interface {

}

inputs = in:IFFT;
outputs = out:ArrayToSequence;

actor IFFT {

}

computation = "ptolemy.domains.sdf.lib.IFFT";
order : PARBMETER = 7.0;

input : INPUT = in;

output : OUTPUT = el;

actor Scale ({

}

computation = "ptolemy.actor.lib.Scale";
input : INPUT = el;

output : OUTPUT = e2;

factor : PARAMETER = 128;

actor SequenceToArray {

}

computation = "ptolemy.domains.sdf.lib.SequenceToArray";
input : INPUT = e2;

output : OUTPUT = e3;

arraylength : PARAMETER = 128;

actor ArrayExtract ({

}

computation = “ptolemy.actor.lib.ArrayExtract";
input : INPUT = e3;

output : OUTPUT = e4;

sourcePosition : PARAMETER = 64;

extractlLength : PARAMETER = 64;
destinationPosition : PARAMETER = 0;
outputArraylLength : PARAMETER = 64;

actor ArrayToSequence {

computation = "ptolemy.domains.sdf.lib.ArrayToSequence’;
input : INPUT = e4;

output : OUTPUT = out;

arrayLength : PARAMETER = 64;

dif RNG_FR {
topology {
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nodes = PAD,
WEIGHT,

COMPRESS,
COMPENSATE;
edges = PADDED (PAD, WEIGHT),
WEIGHTED (WEIGHT, COMPRESS),
COMPRESSED (COMPRESS, COMPENSATE) ;

)
interface {
inputs = RANGE_IN:PAD,
TAYLOR_WTS:WEIGHT,
RCS_WTS : COMPENSATE;

outputs = RANGE_OUT:COMPENSATE;
}
parameter {

NFFT;

NR;

NPAD;

PAD VAL = (0.0,0.0);
}

actor PAD {
computation = "mapss.applications.sar.SequencePad";

inputLength : PARAMETER = NR;
outputLength : PARAMETER = 256;
padvalue : PARAMETER = PAD VAL;
input : INPUT = RANGE_IN;
output : OUTPUT = PADDED;

}

actor WEIGHT {
computation = "ptolemy.actor.lib.MultiplyDivide";

multiply : INPUT = PADDED, TAYLOR_WTS;
output : OUTPUT = WEIGHTED;
}

actor COMPRESS {
computation = "ptolemy.domains.sdf.lib.FFT";

order : PARAMETER = 8.0;

input : INPUT = WEIGHTED:

output : OUTPUT = COMPRESSED;
}

actor COMPENSATE {
computation = "ptolemy.actor.lib.MultiplyDivide";

multiply : INPUT = COMPRESSED, RCS_WTS;
output : OUTPUT = RANGE_OUT;

}

dif AZI_FR {

topology {
nodes = CORNERTURN,
FFT,
CONVL,
IFFET;

edges = YFCO (CORNERTURN, FET),
Y AZ (FFT, CONVL),
VMAUL (CONVL, IFFT);
}

interface {
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dif

inputs = AZI_N:CORNERTURN,
AZ KERN:CONVL;
outputs = AZI_OUT:IFFT;
1
parameter {
NFFT;
RNG_FFT;

refinement {
IFFT_SUBGRAPH = IFFT;
in : VMAUL;
out : AZI_OUT;
}
actor CORNERTURN {
computation = "mapss.applications.sar.MatrixTranspose";
rowN : PARAMETER = NFFT;
colN : PARAMETER = RNG_FFT;
input : INPUT = AZI_N;
output : OUTPUT = YFCO;
}
actor FFT {
computation = "ptolemy.domains.sdf.1lib.FFT";
order : PARABMETER = 7.0;
input : INPUT = YFCO;
output : OUTPUT = Y_AZ;
}
actor CONVL ({
computation = "ptolemy.actor.lib.MultiplyDivide";
multiply : INPUT = Y_AZ, AZ_KERN;
output : OUTPUT = VMAUL;
1
actor IFFT {

computation = "ptolemy.actor.TypedCompositeActor";
}
FR_SAR {
topology {
nodes = RANGE,
AZIMUTH;

edges = RNG_OUT (RANGE, AZIMUTH) ;
}
interface {
inputs = SAR_IN:RANGE,
TAYLOR : RANGE,
RCS : RANGE,
AZ_ KERN:AZIMUTH;
outputs = SAR_OUT:AZIMUTH;
}
parameter {
NFFT_RNG = 256;
NFFT AZI = 128;
N R = 235;
NFILL = "NFFT_RNG-N_R";
}
refinement ({
RNG_FR = RANGE;
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RANGE_IN : SAR_IN;
TAYLOR_WTS : TAYLOR;
RCS_WTS : RCS;
RANGE_OUT : RNG_OUT;
NFFT = NFFT_RNG;
NR = N_R;
NPAD = NFILL;

}

refinement {
AZI _FR = AZIMUTH;
AZI_N : RNG_OUT;
AZ_KERN : AZ_KERN;
AZI_OUT : SAR_OUT;
NFFT = NFFT_AZI;
RNG_FFT = NFFT_RNG;

}

actor RANGE ({
computation = "ptolemy.actor.TypedCompositeActor";

}
actor AZIMUTH ({
computation = "ptolemy.actor.TypedCompositeActor";

}
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The SableCC (version 2.16.2) Grammar of the Dataflow Interchange Format
Package mapss.dif.language.sablecc;

Helpers
all = [0 .. 127];
digit = ['0' .. '9'];
non digit = [[['a' .. 'z'] + ['A" .. '2']] + '_"];
double = ( "+' | '-' )? (digit*) '.' (digit+)
( (‘e' | 'E") ( "+' | '-' )7 digit+ )?;
integer = ( '-' )? digit+;

tab = 9;
cr = 13;
1f = 10;
eol = cr 1f | cr | 1f; // This takes care of different platforms

not_cr_1f = [all -{cr + 1£f11]:

not star = [all -'*'];
not star_slash = [not_star -'/'];
short comment = '//' not_cr_ 1lf* eol;
long comment = '/*' not_star* '*'+
(not_star_slash not_star* '*'+)* '/';

comment = long comment | short_ comment;
simple escape segqguence = '\' "'' [ '\"' | "A\\' |

l\bl ] l\fl ‘ l\nl l r\rv I ‘\t';
octal digit = ['0' .. '7'];
octal escape_sequence = '\' octal digit octal digit? octal digit?;
hexadecimal digit = [digit + [['a' .. "£'] + [*A' .. "F'111;
hexadecimal escape sequence = '\x' hexadecimal _digit+;

escape_sequence = simple_escape_sequence | octal_escape_sequence |
hexadecimal escape_sequence;

s_char = [all =['""' + ['s* + ['\' + [10 + 13]11]] | escape_sequence;
s_char_sequence = s_char*;

string = '"' s _char_ sequence '"';

string identifier = '$' s_char_sequence 'S$';

Tokens

blank = (' ' | tab | eol);
comment = comment;

1 bkt ="
r bkt
1 par
r par = '
1 sgqr = '
r_sgr = '
semicolon

1

EH

1

colon =
comma =
s gte
pIus = '4+7;
equal =1
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dot = "'.";

graph = 'graph';

attribute = 'attribute';
basedon = 'basedon';
interface = 'interface';
parameter = 'parameter’';
refinement = 'refinement';
topology = 'topology':
actor = 'actor';

inputs = 'inputs';

outputs = 'outputs';

nodes = 'nodes';

edges = 'edges';

integer = integer;
double = double;

true = 'true';

false = 'false';

string = string;

string tail = '+' (' ' | eol | tab)* string;

identifier = non_digit (digit | non_digit)*;
dot_identifier = non_digit (digit | non_digit)*

('"." non_digit (digit | non_digit)* )+;
string identifier = string identifier;

Ignored Tokens

blank,
comment;

Productions
graph list = graph_block*;

graph block = identifier name 1_bkt block* r_bkt;
block =

{basedon} basedon basedon_body |
{topologyl} topology topology body |
{interface} interface interface_body |
{parameter} parameter parameter body |
{refinement} refinement refinement body |
{builtin_attribute} identifier attribute_body |
{user defined_attribute} attribute name attribute body |
{actor} actor name actor_ body;

name = {identifier} identifier |

{string identifier} string identifier;

/‘* Lo sl okoue de ke bk ke sk sk ke Rk R e e e kb R Ak sk ek ke ke ke ok ok ok

* Definitions for basedon block:

*/

basedon body = 1 bkt basedon expression r_bkt;
basedon expression = name semicoclon;

/*************************************
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* Definitions for topology block:
*/

topology body = 1 bkt topology list* r bkt;
topology list =
{nodes} nodes equal name node_identifier tail* semicolon |
{edges} edges equal edge definition edge_definition_tail*
semicolon ;

node identifier tail = comma name;
edge_definition = [edge]:name 1 par

[source] :name comma

[sink] :name r_par;
edge definition_tail = comma edge definition;

/*************************************
* Definitions for interface block:

*/ )

interface body = 1 bkt interface expression* r_bkt;
interface_expression =

{input} inputs equal port definition port_definition_tail*
semicolon |

{output} outputs equal port_definition port_definition_tail*
semicolon;

port_definition = {plain} name |
{node} [port]:name colon [node]:name;
port definition tail = comma port definition;

/*************************************
* Definitions for parameter block:

*/

parameter body = 1 bkt parameter expression* r_bkt;
parameter expression =

{value} name equal value semicolon |
{range} name colon range block semicolon |
{blank} name semicolon;

range block = range range tail*;

range =
{closed_closed} 1 sgr [left]:number comma [right]:number r_sqr |
{open closed} 1 par [left]:number comma [right]:number r_sqgr |
{closed open} 1 sqgr [left]:number comma [right]:number r par |
{open_open} 1 par [left]:number comma [right]:number r_par |
{discrete} 1 bkt number discrete_range number_tail* r bkt;

discrete range number tall = comma number;

range tail = plus range;

number - {double} double | {integer} integer;

/7\-************************************

* Definitions for refinement block:

*/

refinement_body = 1 bkt refinement definition refinement_expression*
r bkt;
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>

refinement_definition [graph] :name equal [node] :name semicolon;
refinement expression =
{ports} [port] :name colon [element]:name semicolon |

{params} [subparam] :name equal [param]:name semicolon;

/*************************************

* Definitions for attribute block:

*/

attribute body = 1 bkt attribute expression* r_bkt;
attribute expression =
{value} name? equal value semicolon |
{reference}l [element]:name? equal [reference]:name semicolon |
{subelement assign} [trggraph]:name [fst]:dot [trgele]:name equal
[srcgraph] :name [snd]:dot [srcele]:name
semicolon |
{idlist} name? equal id_list semicolon;

id list = name ref id tail+;
ref id tail = comma name;

/*************************************

* Definitions for actor block:

*/

actor_body = 1 bkt actor expression* r_ bkt;
actor_expression =
{valuel name type? equal value semicolon |
{reference} [argument]:name type? equal [reference]:name
semicolon |
{reflist} name type? equal id_list semicolon;

type =
{identifier} colon identifier |
{dot_identifier} colon dot_identifier;

/**************‘k**********************

* Definitions for value:

*/

value =
{integer} integer |
{double} double |
{complex} 1 par [real]:double comma [imag]:double r_par |
{int matrix} 1 _sqr int row int row tail* r_sqgr |
{double matrix} 1 sqr double row double row tail* r_sqgr |
{complex matrix} 1 sgr complex row complex row_tail* r sqr |
{string} concatenated string value |
{boolean} boolean value |

4

{array} 1_bkt wvalue value tail* r bkt;

int_row = integer integer_tail*;
integer tail = comma integer;
int_row_tail = semicolon int_row;

double_row = double double_tail*;
double _tail = comma double;
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double_row tail = semicolon double_row;

complex

complex
complex
complex

= 1 par [real]:double comma [imag]:double
row = complex complex tail*;

tail = comma complex;

row_tail = semicolon complex row;

concatenated_string value = string string_ tail*;

boolean

value

{true} true |
{false} false;

value tail = comma value;
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The SableCC (version 2.16.2) Grammar of the Actor Interchange Format

Package mapss.dif.aif.sablecc;

Helpers
all = [0 .. 127];
digit = ['0' .. '9'];
non_digit = [[['a' .. 'z'] + ['A' .. 'Z']] + '_'1;
double = ( '+' | '~' )? (digit*) '.' (digit+)
( (te' | EY) ( '+#' | '=" )7 digit+ )?;
integer = ( '-' )? digit+;

tab = 9;
cr = 13;
1f 10;
eol = cr 1f | cr | 1f; // This takes care of different platforms

not cr 1f = [all -[cr + 1f]};
not star = [all -'*'];

not_star_slash = [not_star -'/'];
short_comment = '//' not_cr 1f* eol;
long comment = '/*' not_star* '*'+ (not_star_ slash not_star* '*'+)*
’/l;
comment = long comment | short comment;
simple_escape_sequence = '\' "'’ | \"' | "\\' |
l\bl I '\f' | I\nl I l\rl | l\tl;
octal digit = ['0' .. '7'];
octal_escape_sequence = '\' octal digit octal digit? octal digit?;
hexadecimal digit = [digit + {[['a’' .. "£'] + ['A' .. "F']11];
hexadecimal escape_sequence = '\x' hexadecimal digit+;

escape_sequence = simple_escape_sequence | octal_escape_sequence |
hexadecimal escape sequence;

s_char = [all -[""" + ['$' + ['\' + [10 + 13]]1]]1 | escape sequence;
s_char_sequence = s_char*;

string = '"' s _char sequence '"';

string_ildentifier = '$' s char sequence '$';
Tokens

blank = (' ' | tab | eol);

comment = comment;

1 bkt = "{';
r bkt = "}";
1l par = '"(";
r par = '} ';
1 sgr = 'I";
r:sqr = '1';
semicolon = ';';
colon = ':";
comma = ',"';
s _gte = *'7;
plus = '+';
equal = '=';
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dot = '.';

map_to = '->';
map_ from = '<-';
given that = '|';

graph = 'graph';

interface = 'interface';
topology = 'topology';
actor = 'actor';

inputs = 'inputs';
outputs = 'outputs';
nodes = 'nodes';

edges = 'edges';

integer = integer;
double = double;

true = 'true';

false = 'false'; .
string = string; :
string tail = "+' (' ' | eol | tab)* string;

identifier = non digit (digit | non digit)*;
dot_identifier = non digit (digit | non_digit)*

('".'" non digit (digit | non_digit)* )+;
string identifier = string identifier;

Ignored Tokens

blank,
comment ;

Productions

aif_list = aif block*;
aif block = {actor} actor [trg] :type map_ from [src]:type
method_expression? 1 bkt attribute body* r bkt |
{graph} graph [trg]:type map_from [src]:type
method_expression? 1_bkt block* r bkt;

type = {identifier} identifier |
{dot_identifier} dot_identifier;
method expression = given that identifier
1l par argument argument_tail* r par;
argument = {id} identifier |
{value} value;
argument_tail = comma argument;

/-i(************************************

* Definitions for attribute body:

*/

attribute body = {mapping} attribute mapping |
{assign} attribute_assign;
attribute_assign = attribute equal value semicolon;
attribute mapping = {single} [trg]:attribute map_ from [src]:attribute
method expression? semicolon |
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{multi to one} attribute map_from attributes

semicolon |
{one_to multi} attributes map_ from attribute

semicolon;

attributes = attribute attribute_ tail+;
type_expression = colon type;
attributes = attribute attribute_tail+;
attribute tail = comma attribute;

/*************************************

* Definitions for block:

*/

block = {topology} topology topology body |
{interface} interface interface_body |
{actor} actor name actor body;

name = {identifier} identifier |
{string identifier} string_identifier;

/*************************************

* Definitions for topology block:
*/

topology body = 1 bkt topology list* r bkt;
topology list =
{nodes} nodes equal name node_identifier_tail* semicolon |
{edges} edges equal edge definition edge definition tail*
semicolon ;

node _identifier tail = comma name;
edge_definition = [edge]:name 1 par

[source] :name comma

[sink] :name r par;
edge_definition_tail = comma edge definition;

/*************************************

* Definitions for interface block:

*/

interface body = 1 bkt interface expression* r_bkt;
interface_expression =
{input} inputs equal port definition port_definition_tail*
semicolon |
{output} outputs equal port definition port definition tail*
semicolon; -

port definition = {plain} name port mapping? |

. {node} [port] iname colon [node] :namne

port mapping?;
port_definition tail = comma port definition;
port_mapping = map from attribute;

/~k****~k*******************************

* Definitions for actor block:

*/
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actor_body = 1 bkt actor_expression* r_bkt;
actor expression =
{value} name type expression? equal value semicolon |
{reference} [argument]:name type expression? equal
[reference] :name semicolon |
{map} name type expression? map from attribute
method expression? semicolon |
{multi_map} name type expression? map_from attributes semicolon |
{reflist} name type expression? equal id list semicolon;

id_list = name ref id tail+;
ref id tail = comma name;

/*************************************

* Definitions for wvalue:

*/

value =
{integer} integer |
{double} double |
{complex} 1 par [real]:double comma [imag]:double r_par |
{int matrix} 1 sgr int row int row tail* r_sqr |
{double matrix} 1_sgr double_row double_row_tail* r sqr |
{complex matrix} 1 sqgr complex row complex_row_tail* r_sqgr |
{string} concatenated string value |
{boolean} boolean value |
{array} 1_bkt value value_tail* r_bkt;

int_row = integer integer tail¥*;
integer tail = comma integer;
int row tail semicolon int row;

I

double_row = double double tail*;
double tail = comma double;
double row tail = semicolon double row;

complex = 1 par [real]:double comma [imag]:double r_ par;
complex row = complex complex tail*;
complex tail = comma complex;
complex row_tail = semicolon complex row;
concatenated_string value = string string_tail*;
boolean_value

{true} true

|
{false} false;

value tail = comma value;
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The Actor Interchange Specification for MCCI to Ptolemy Il Actor Mapping

graph ptolemy.actor.TypedCompositeActor <- D_FFT

| ifExpression("FI == 1 && M != N") {
topology {
nodes = IFFT, Scale, SequenceToArray, ArrayExtract,
ArrayToSequence;

edges = el (IFFT, Scale),
e2 (Scale, SequenceToArray),
e3 (SequenceToArray, ArrayExtract),
ed4 (ArrayExtract, ArrayToSequence);
}
interface ({
inputs = in : IFFT <- X;
outputs = out : ArrayToSequence <- Y;
}

actor IFFT ({
computation = "ptolemy.domains.sdf.lib.IFFT";

order : PARAMETER <- N | conditionalAssign(
"log (N)/log(2)", "(log(N)/log(2))-rint(log(N)/log(2)) ==
o");
input : INPUT = in;
output : OUTPUT = el;
}
actor Scale {
computation = "ptolemy.actor.lib.Scale";
input : INPUT = el;
output OUTPUT = e2;
factor PARAMETER <- N;
}
actor SequenceToArray {
computation = "ptolemy.domains.sdf.lib.SequenceToArray";
input : INPUT = e2;
output : OUTPUT = e3;
arraylength : PARAMETER <- N;
}
actor ArrayExtract {
computation = "ptolemy.actor.lib.ArrayExtract”;
input : INPUT = e3;
output : OUTPUT = e4;
sourcePosition : PARAMETER <- B | assign("B-1");
extractlLength : PARAMETER <- M;
destinationPosition : PARAMETER = 0;
outputArrayLength : PARAMETER <- M;
}
actor ArrayToSequence {
computation = "ptolemy.domains.sdf.lib.ArrayToSequence";
input : INPUT = e4;
output : OUTPUT = out;
arrayLength : PARAMETER <- M;

}

actor ptolemy.domains.sdf.lib.FFT <- D FFT | ifExpression("FI == 0") {
order : PARAMETER <- N | conditionalAssign(
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"log(N)/log(2)", " (log(N) /log(2))-rint (log(N)/log(2)) == 0");

input : INPUT <- X;
output : OUTPUT <- Y;
}

actor ptolemy.domains.sdf.lib.IFFT <- D_FFT | ifExpression("FI

order : PARBMETER <- N | conditionalAssign(

"

"log(N)/log(2)", " (log(N)/log(2))-rint (log(N)/log(2)) == 0");

input : INPUT <- X;
output : OUTPUT <- Y;

actor mapss.applications.sar.MatrixTranspose <- D_MTRAN {

rowN : PARAMETER <- M;

colN : PARAMETER <- N;

input : INPUT <- X;

output : OUTPUT <- Y7
}

actor ptolemy.actor.lib.MultiplyDivide <- D_VMUL {
multiply : INPUT <- X, Y¥;
output : OUTPUT <- Z;

}

actor mapss.applications.sar.SequencePad <- D VFILL
inputLength : PARAMETER <- N;
outputLength : PARAMETER <- P | assign("P+N");
padvalue : PARAMETER <- V;
input : INPUT <- X;
output : OUTPUT <- ¥;

}

actor ptolemy.actor.TypedCompositeActor <- SUBGRAPH
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